-8 , and V₂ = ---- Let x = X2 Ax for each x. A= -5 , and let T: R²R² be a linear transformation that maps x into X₁V₁ + X₂V₂. Find a matrix A such that T(x) is ...

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Let \( \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \), \( \mathbf{v}_1 = \begin{bmatrix} -8 \\ 8 \end{bmatrix} \), and \( \mathbf{v}_2 = \begin{bmatrix} -5 \\ -3 \end{bmatrix} \).

Let \( T: \mathbb{R}^2 \to \mathbb{R}^2 \) be a linear transformation that maps \( \mathbf{x} \) into \( x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 \). 

Find a matrix \( A \) such that \( T(\mathbf{x}) \) is \( A\mathbf{x} \) for each \( \mathbf{x} \).

\[ A = \boxed{\phantom{A}} \]
Transcribed Image Text:Let \( \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \), \( \mathbf{v}_1 = \begin{bmatrix} -8 \\ 8 \end{bmatrix} \), and \( \mathbf{v}_2 = \begin{bmatrix} -5 \\ -3 \end{bmatrix} \). Let \( T: \mathbb{R}^2 \to \mathbb{R}^2 \) be a linear transformation that maps \( \mathbf{x} \) into \( x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 \). Find a matrix \( A \) such that \( T(\mathbf{x}) \) is \( A\mathbf{x} \) for each \( \mathbf{x} \). \[ A = \boxed{\phantom{A}} \]
Expert Solution
Step 1: Given

Given that x equals open square brackets table row cell x subscript 1 end cell row cell x subscript 2 end cell end table close square brackets comma v subscript 1 equals open square brackets table row cell negative 8 end cell row 8 end table close square brackets comma v subscript 2 equals open square brackets table row cell negative 5 end cell row cell negative 3 end cell end table close square brackets and x subscript 1 v subscript 1 plus x subscript 2 v subscript 2.

The objective is to find the matrix A in which T left parenthesis x right parenthesis equals A x.

steps

Step by step

Solved in 3 steps with 8 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,