7.40. A random walk on a graph goes from vertex to adjacent vertex by walking along the connecting edge. It chooses the edge at random: all edges connecting to that vertex are equally likely. Consider a random walk on the graph below. (a) Find the long-term proportion of time spent at vertex 0. (b) Find the expected return time to 0. (c) Find the probability that a random walk from vertex e hits 0 before hitting either a or b. (d) Suppose the random walk starts at 0. Find the expected time to reach {a Ub}. [Hint: Make use of symmetry!] A
7.40. A random walk on a graph goes from vertex to adjacent vertex by walking along the connecting edge. It chooses the edge at random: all edges connecting to that vertex are equally likely. Consider a random walk on the graph below. (a) Find the long-term proportion of time spent at vertex 0. (b) Find the expected return time to 0. (c) Find the probability that a random walk from vertex e hits 0 before hitting either a or b. (d) Suppose the random walk starts at 0. Find the expected time to reach {a Ub}. [Hint: Make use of symmetry!] A
A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
Recommended textbooks for you
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON