(7) Find the variance of XX when XX is Exp(λ)Exp(λ). The correct answer is     1/λ1/λ 2/λ2/λ 2/λ22/λ2 1/λ21/λ2 None of the above N/A   (Select One)             (8) Find the variance of XX when XX is distributed as N(0,1)N(0,1). The correct answer is     00 −1−1 11 22 −2−2 N/A   (Select One)

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
Question

(7) Find the variance of XX when XX is Exp(λ)Exp(λ).


The correct answer is
    1/λ1/λ 2/λ2/λ 2/λ22/λ2 1/λ21/λ2 None of the above N/A
  (Select One)            




(8) Find the variance of XX when XX is distributed as N(0,1)N(0,1).

The correct answer is
    00 −1−1 11 22 −2−2 N/A
  (Select One)            


**Exercise Questions**

**(7)** Find the variance of \( X \) when \( X \) is \( \text{Exp}(\lambda) \).

- The correct answer is:
  - \( \frac{1}{\lambda} \)
  - \( \frac{2}{\lambda} \)
  - \( \frac{2}{\lambda^2} \)
  - \( \frac{1}{\lambda^2} \)
  - None of the above
  - N/A (Selected)

**(8)** Find the variance of \( X \) when \( X \) is distributed as \( N(0, 1) \).

- The correct answer is:
  - 0
  - \(-1\)
  - 1
  - 2
  - \(-2\)
  - N/A (Selected)

**(9)** Find \( \text{Std}(X) \) when \( X \) is a continuous random variable with the following given density.

(i) \( f(x) = 2(1-x) \), on \([0, 1]\),

(iii) \( f(x) = 0.01e^{-0.01x} \), on \([0, \infty)\),

(v) \( f(x) = 3/x^4 \), on \([1, \infty)\),

(vii) \( f(x) = \frac{3xe^{-x}}{2} \), on \([0, \infty)\),

(ix) \( f(x) = \frac{1}{2} \sin x \), on \((0, \pi)\),

- The correct answer is:
  - 1
  - \( \frac{1}{18} \)
  - 18
  - \( (18)^{-1/2} \)
  - None of the above
  - N/A
Transcribed Image Text:**Exercise Questions** **(7)** Find the variance of \( X \) when \( X \) is \( \text{Exp}(\lambda) \). - The correct answer is: - \( \frac{1}{\lambda} \) - \( \frac{2}{\lambda} \) - \( \frac{2}{\lambda^2} \) - \( \frac{1}{\lambda^2} \) - None of the above - N/A (Selected) **(8)** Find the variance of \( X \) when \( X \) is distributed as \( N(0, 1) \). - The correct answer is: - 0 - \(-1\) - 1 - 2 - \(-2\) - N/A (Selected) **(9)** Find \( \text{Std}(X) \) when \( X \) is a continuous random variable with the following given density. (i) \( f(x) = 2(1-x) \), on \([0, 1]\), (iii) \( f(x) = 0.01e^{-0.01x} \), on \([0, \infty)\), (v) \( f(x) = 3/x^4 \), on \([1, \infty)\), (vii) \( f(x) = \frac{3xe^{-x}}{2} \), on \([0, \infty)\), (ix) \( f(x) = \frac{1}{2} \sin x \), on \((0, \pi)\), - The correct answer is: - 1 - \( \frac{1}{18} \) - 18 - \( (18)^{-1/2} \) - None of the above - N/A
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer