Suppose X and Y are independent. X has a mean of 1 and variance of 1, Y has a mean of 0, and variance of 2. Let S=X+Y, calculate E(S) and Var(S). Let Z=2Y^2+1/2 X+1 calculate E(Z). Hint: for any random variable X, we have Var(X)=E(X-E(X))^2=E(X^2 )-(E(X))^2, you may want to find EY^2 with this. Calculate cov(S,X). Hint: similarly, we have cov(Z,X)=E(ZX)-E(Z)E(X),
Suppose X and Y are independent. X has a mean of 1 and variance of 1, Y has a mean of 0, and variance of 2. Let S=X+Y, calculate E(S) and Var(S). Let Z=2Y^2+1/2 X+1 calculate E(Z). Hint: for any random variable X, we have Var(X)=E(X-E(X))^2=E(X^2 )-(E(X))^2, you may want to find EY^2 with this. Calculate cov(S,X). Hint: similarly, we have cov(Z,X)=E(ZX)-E(Z)E(X),
Big Ideas Math A Bridge To Success Algebra 1: Student Edition 2015
1st Edition
ISBN:9781680331141
Author:HOUGHTON MIFFLIN HARCOURT
Publisher:HOUGHTON MIFFLIN HARCOURT
Chapter4: Writing Linear Equations
Section: Chapter Questions
Problem 12CR
Related questions
Question
- Suppose X and Y are independent. X has a mean of 1 and variance of 1, Y has a mean of 0, and variance of 2.
- Let S=X+Y, calculate E(S) and Var(S).
- Let Z=2Y^2+1/2 X+1 calculate E(Z). Hint: for any random variable X, we have Var(X)=E(X-E(X))^2=E(X^2 )-(E(X))^2, you may want to find EY^2 with this.
- Calculate cov(S,X). Hint: similarly, we have cov(Z,X)=E(ZX)-E(Z)E(X),
- Calculate cov(Z,X).
- Are Z and X independent? Are Z and Y independent? Why?
- What about mean independence?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 1 images
Recommended textbooks for you
Big Ideas Math A Bridge To Success Algebra 1: Stu…
Algebra
ISBN:
9781680331141
Author:
HOUGHTON MIFFLIN HARCOURT
Publisher:
Houghton Mifflin Harcourt
Glencoe Algebra 1, Student Edition, 9780079039897…
Algebra
ISBN:
9780079039897
Author:
Carter
Publisher:
McGraw Hill
Big Ideas Math A Bridge To Success Algebra 1: Stu…
Algebra
ISBN:
9781680331141
Author:
HOUGHTON MIFFLIN HARCOURT
Publisher:
Houghton Mifflin Harcourt
Glencoe Algebra 1, Student Edition, 9780079039897…
Algebra
ISBN:
9780079039897
Author:
Carter
Publisher:
McGraw Hill
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning