6.2 Derive the expression for the maximum deflection of a simply supported beam of negligible weight carrying a point load at its mid-span position. The distance between the supports is L, the second moment of area of the cross-section is I and the modulus of elasticity of the beam material is E. The maximum deflection of such a simply supported beam of length 3 m is 4.3 mm when carrying a load of 200 kN at its mid-span position. What would be the deflection at the free end of a cantilever of the same material, length and cross-section if it carries a load of 100 kN at a point 1.3 m from the free end? [13.4 mm]

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
6.2 Derive the expression for the maximum deflection of a simply supported beam of
negligible weight carrying a point load at its mid-span position. The distance between
the supports is L, the second moment of area of the cross-section is I and the modulus
of elasticity of the beam material is E.
The maximum deflection of such a simply supported beam of length 3 m is 4.3
mm when carrying a load of 200 kN at its mid-span position. What would be the
deflection at the free end of a cantilever of the same material, length and cross-section
if it carries a load of 100 kN at a point 1.3 m from the free end?
[13.4 mm]
Transcribed Image Text:6.2 Derive the expression for the maximum deflection of a simply supported beam of negligible weight carrying a point load at its mid-span position. The distance between the supports is L, the second moment of area of the cross-section is I and the modulus of elasticity of the beam material is E. The maximum deflection of such a simply supported beam of length 3 m is 4.3 mm when carrying a load of 200 kN at its mid-span position. What would be the deflection at the free end of a cantilever of the same material, length and cross-section if it carries a load of 100 kN at a point 1.3 m from the free end? [13.4 mm]
Expert Solution
steps

Step by step

Solved in 5 steps with 16 images

Blurred answer
Knowledge Booster
Design of Beams and Shafts
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY