6. Which of the following is true about the function f(x) = xe¯*? A. (1,-) is local maximum for f B. (–1,-) is local maximum for f C. (1,-) is local minimum for f D. (1, e) is local minimum for f E. (-1,-) is local minimum for f F. None of the above

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

thank you!

6. Which of the following is true about the function \( f(x) = xe^{-x^2} \)?

A. \( \left( 1, \frac{1}{e} \right) \) is a local maximum for \( f \)

B. \( \left( -1, \frac{1}{e} \right) \) is a local maximum for \( f \)

C. \( \left( 1, \frac{1}{e} \right) \) is a local minimum for \( f \)

D. \( (1, e) \) is a local minimum for \( f \)

E. \( \left( -1, \frac{1}{e} \right) \) is a local minimum for \( f \)

F. None of the above
Transcribed Image Text:6. Which of the following is true about the function \( f(x) = xe^{-x^2} \)? A. \( \left( 1, \frac{1}{e} \right) \) is a local maximum for \( f \) B. \( \left( -1, \frac{1}{e} \right) \) is a local maximum for \( f \) C. \( \left( 1, \frac{1}{e} \right) \) is a local minimum for \( f \) D. \( (1, e) \) is a local minimum for \( f \) E. \( \left( -1, \frac{1}{e} \right) \) is a local minimum for \( f \) F. None of the above
Expert Solution
Step 1

If second derivative is less than zero then we get maximum value

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning