6. Water is flowing uphill through a pipe. At point 1, the water has a speed of 3 m/s and an absolute pressure of 105,000 Pa. Find the absolute pressure of the water as it flows past point 2 in the figure. Note that additional information is given in the figure. r = 1cm here Point 1: P= 105000 Pa r = 2 cm v = 3 m/s 50cm Point 2: P unknown v = 2 m/s r = 2.45 cm
Viscosity
The measure of the resistance of a fluid to flow is known as viscosity. Most fluids have some resistance to motion, the resistance provided by the fluid is called viscosity. This resistance is created by the force of attraction between the fluid molecules. If you pour water through a funnel, it flows easily and quickly, because it has very little resistance. But if you pour honey through a funnel, it may take a little time longer, as the density of honey is high.
Poiseuille's Law
The law of Poiseuille or Poiseuille's equation states that the pressure drop of an incompressible fluid especially a liquid in a laminar flow that passes through a cylindrical tube of length L, radius r, pressure gradient ΔP, and mainly depends on the viscosity of the fluid is nothing but the pressure difference of the layers of fluids. ΔP=P1-P2
Drag Forces
Forces that occur due to the movement of fluid are known as fluid mechanics. Following are the fluids present:
![6.
Water is flowing uphill through a pipe. At
point 1, the water has a speed of 3 m/s and an absolute
pressure of 105,000 Pa. Find the absolute pressure of the
water as it flows past point 2 in the figure. Note that
additional information is given in the figure.
r = 1cm
here
Point 1:
P= 105000 Pa
r = 2 cm
v = 3 m/s
50cm
Point 2:
P unknown
v = 2 m/s
r = 2.45 cm](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F60441d47-3b3e-4515-b675-6990e7af5dda%2F99839699-b033-4251-bf8b-84bceadbdb96%2F7dsrx9b.png&w=3840&q=75)
![](/static/compass_v2/shared-icons/check-mark.png)
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
![Physics for Scientists and Engineers](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
![Lecture- Tutorials for Introductory Astronomy](https://www.bartleby.com/isbn_cover_images/9780321820464/9780321820464_smallCoverImage.gif)
![College Physics: A Strategic Approach (4th Editio…](https://www.bartleby.com/isbn_cover_images/9780134609034/9780134609034_smallCoverImage.gif)