6. In Fig., solve for IB, IC, and VCE. Also, construct a DC load line showing the values of IC(sat),VCE (off), Ico, and VCEQ. +Vcc = 12 V R₂ = 390 kn R = 1.5 k Boc=150

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
Question
### Transistor Biasing Circuit Analysis

#### Problem Statement

In the figure below, solve for \( I_B \), \( I_C \), and \( V_{CE} \). Also, construct a DC load line showing the values of \( I_{C(sat)} \), \( V_{CE(off)} \), \( I_{CQ} \), and \( V_{CEQ} \).

#### Circuit Diagram

The given circuit diagram is as follows:

- The supply voltage \( V_{CC} \) is 12 V.
- The base resistor \( R_B \) is 390 kΩ.
- The collector resistor \( R_C \) is 1.5 kΩ.
- The current gain \( \beta_{DC} \) is 150.

![Transistor Circuit](#)

(Note: Insert the image of the transistor circuit here)

#### Step-by-Step Solution

1. **Solve for \( I_B \) (Base Current):**

   Using the formula for base current,
   \[
   I_B = \frac{V_{CC} - V_{BE}}{R_B + (\beta_{DC} \cdot R_E)}
   \]
   
   Assuming \( V_{BE} \approx 0.7V \) (typical for silicon transistors),
   \[
   I_B = \frac{12V - 0.7V}{390k\Omega} \approx \frac{11.3V}{390k\Omega}  \approx 29 \mu A
   \]

2. **Solve for \( I_C \) (Collector Current):**

   Using the current gain relationship,
   \[
   I_C = \beta_{DC} \cdot I_B 
   \]
   \[
   I_C = 150 \cdot 29 \mu A \approx 4.35 mA 
   \]

3. **Solve for \( V_{CE} \) (Collector-Emitter Voltage):**

   Using the formula for \( V_{CE} \),
   \[
   V_{CE} = V_{CC} - (I_C \cdot R_C) 
   \]
   \[
   V_{CE} = 12V - (4.35mA \cdot 1.5k\Omega) \approx 12V - 6.525V \approx 5.475V 
   \]

####
Transcribed Image Text:### Transistor Biasing Circuit Analysis #### Problem Statement In the figure below, solve for \( I_B \), \( I_C \), and \( V_{CE} \). Also, construct a DC load line showing the values of \( I_{C(sat)} \), \( V_{CE(off)} \), \( I_{CQ} \), and \( V_{CEQ} \). #### Circuit Diagram The given circuit diagram is as follows: - The supply voltage \( V_{CC} \) is 12 V. - The base resistor \( R_B \) is 390 kΩ. - The collector resistor \( R_C \) is 1.5 kΩ. - The current gain \( \beta_{DC} \) is 150. ![Transistor Circuit](#) (Note: Insert the image of the transistor circuit here) #### Step-by-Step Solution 1. **Solve for \( I_B \) (Base Current):** Using the formula for base current, \[ I_B = \frac{V_{CC} - V_{BE}}{R_B + (\beta_{DC} \cdot R_E)} \] Assuming \( V_{BE} \approx 0.7V \) (typical for silicon transistors), \[ I_B = \frac{12V - 0.7V}{390k\Omega} \approx \frac{11.3V}{390k\Omega} \approx 29 \mu A \] 2. **Solve for \( I_C \) (Collector Current):** Using the current gain relationship, \[ I_C = \beta_{DC} \cdot I_B \] \[ I_C = 150 \cdot 29 \mu A \approx 4.35 mA \] 3. **Solve for \( V_{CE} \) (Collector-Emitter Voltage):** Using the formula for \( V_{CE} \), \[ V_{CE} = V_{CC} - (I_C \cdot R_C) \] \[ V_{CE} = 12V - (4.35mA \cdot 1.5k\Omega) \approx 12V - 6.525V \approx 5.475V \] ####
Expert Solution
steps

Step by step

Solved in 4 steps with 6 images

Blurred answer
Knowledge Booster
Diode-Transistor Logic Circuit
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,