6. How do airbags work? a. The rapid decomposition of sodium azide, NaN3 (MW = 65.0099 g/mol), to its elements is the first of several reactions used to inflate airbags. How many moles of gas are produced from 60.0 g of NaN3? Note: You will need a balanced chemical equation. b. As you know solid sodium is highly reactive (and we probably don't want it on our face in a car accident), the following reaction removes the solid sodium. How many moles of N₂ are produced in this reaction? Hint: You will need the number of moles of Na formed in the first reaction (part a). Na(s) + KNO3(s)→ K₂O(s) + Na₂0(s) + N₂(g) c. If the overall process (both reactions) is 84.5 % efficient, how many moles of nitrogen gas are actually produced?
Thermochemistry
Thermochemistry can be considered as a branch of thermodynamics that deals with the connections between warmth, work, and various types of energy, formed because of different synthetic and actual cycles. Thermochemistry describes the energy changes that occur as a result of reactions or chemical changes in a substance.
Exergonic Reaction
The term exergonic is derived from the Greek word in which ‘ergon’ means work and exergonic means ‘work outside’. Exergonic reactions releases work energy. Exergonic reactions are different from exothermic reactions, the one that releases only heat energy during the course of the reaction. So, exothermic reaction is one type of exergonic reaction. Exergonic reaction releases work energy in different forms like heat, light or sound. For example, a glow stick releases light making that an exergonic reaction and not an exothermic reaction since no heat is released. Even endothermic reactions at very high temperature are exergonic.


Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 4 images









