6. 7 6 12 6 and v = - 7 Let A = -5 1 , b = - 7 Compute Au and Av, and compare them with b. Could u possibly be a least-squares solution of Ax = b? -2 7 6 5 (Answer this without computing a least-squares solution.) Au = (Simplify your answer.) Av = (Simplify your answer.) Compare Au and Av with b. Could u possibly be a least-squares solution of Ax = b? O A. Au is closer to b than Av is. Thus, u could possibly be a least-squares solution of Ax = b. O B. Av is closer to b than Au is. Thus, u cannot possibly be a least-squares solution of Ax = b. O C. Av and Au are equally close to b. Thus, both v and u can be a least-squares solution of Ax b. O D. Av and Au are equally close to b. Thus, neither v nor u can be a least-squares solution of Ax = b.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
icon
Concept explainers
Question
### Least-Squares Solution Comparison

Given the matrix \( A \), vector \( b \), and two potential solution vectors \( u \) and \( v \):

\[ A = \begin{bmatrix} 7 & 6 & 1 \\ -5 & 1 & -1 \\ 7 & 6 & 0 \end{bmatrix}, \]
\[ b = \begin{bmatrix} 12 \\ -7 \\ 5 \end{bmatrix}, \]
\[ u = \begin{bmatrix} 6 \\ -2 \\ 2 \end{bmatrix}, \]
\[ v = \begin{bmatrix} 6 \\ -7 \\ -7 \end{bmatrix}. \]

Compute \( Au \) and \( Av \), and compare them with \( b \). Determine if \( u \) could possibly be a least-squares solution of \( Ax = b \) and compare its suitability relative to \( v \).

(Answer this without computing a least-squares solution.)

#### Step-by-Step Calculations:

1. **Compute \( Au \):**

\[ 
Au = \begin{bmatrix} 7 & 6 & 1 \\ -5 & 1 & -1 \\ 7 & 6 & 0 \end{bmatrix} \begin{bmatrix} 6 \\ -2 \\ 2 \end{bmatrix} 
\]
\[
= \begin{bmatrix} 7(6) + 6(-2) + 1(2) \\ -5(6) + 1(-2) + (-1)(2) \\ 7(6) + 6(-2) + 0(2) \end{bmatrix} 
\]
\[
= \begin{bmatrix} 42 - 12 + 2 \\ -30 - 2 - 2 \\ 42 - 12 \end{bmatrix} 
\]
\[
= \begin{bmatrix} 32 \\ -34 \\ 30 \end{bmatrix}.
\]

2. **Compute \( Av \):**

\[ 
Av = \begin{bmatrix} 7 & 6 & 1 \\ -5 & 1 & -1 \\ 7 & 6 & 0 \end{bmatrix} \begin{bmatrix} 6 \\ -7 \\ -7 \end{bmatrix}
Transcribed Image Text:### Least-Squares Solution Comparison Given the matrix \( A \), vector \( b \), and two potential solution vectors \( u \) and \( v \): \[ A = \begin{bmatrix} 7 & 6 & 1 \\ -5 & 1 & -1 \\ 7 & 6 & 0 \end{bmatrix}, \] \[ b = \begin{bmatrix} 12 \\ -7 \\ 5 \end{bmatrix}, \] \[ u = \begin{bmatrix} 6 \\ -2 \\ 2 \end{bmatrix}, \] \[ v = \begin{bmatrix} 6 \\ -7 \\ -7 \end{bmatrix}. \] Compute \( Au \) and \( Av \), and compare them with \( b \). Determine if \( u \) could possibly be a least-squares solution of \( Ax = b \) and compare its suitability relative to \( v \). (Answer this without computing a least-squares solution.) #### Step-by-Step Calculations: 1. **Compute \( Au \):** \[ Au = \begin{bmatrix} 7 & 6 & 1 \\ -5 & 1 & -1 \\ 7 & 6 & 0 \end{bmatrix} \begin{bmatrix} 6 \\ -2 \\ 2 \end{bmatrix} \] \[ = \begin{bmatrix} 7(6) + 6(-2) + 1(2) \\ -5(6) + 1(-2) + (-1)(2) \\ 7(6) + 6(-2) + 0(2) \end{bmatrix} \] \[ = \begin{bmatrix} 42 - 12 + 2 \\ -30 - 2 - 2 \\ 42 - 12 \end{bmatrix} \] \[ = \begin{bmatrix} 32 \\ -34 \\ 30 \end{bmatrix}. \] 2. **Compute \( Av \):** \[ Av = \begin{bmatrix} 7 & 6 & 1 \\ -5 & 1 & -1 \\ 7 & 6 & 0 \end{bmatrix} \begin{bmatrix} 6 \\ -7 \\ -7 \end{bmatrix}
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Correlation, Regression, and Association
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,