5. Maximize z = 3x, + x2 + 4x3 subject to 3x, + 3x2 + xz < 18 2x1 + 2x2 + 4xz = 12 %3D X1 2 0, x3 2 0. 6. Minimize z = 5x, + 2x2 + 6x3 subject to 4x, + 2x, + X3 z 12 3x, + 2x2 + 3x356 X1 2 0, x2 2 0.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

find the dual of the given linear programming  problem 

5. Maximize
subject to
3x1 + x2 + 4x3
z =
3x1 + 3x, + X3 < 18
2x1 + 2x2 + 4xz = 12
x1 2 0, x3 2 0.
6. Minimize
z = 5x1 + 2x2 + 6x3
subject to
4x1 + 2x, + x3 z 12
Зx, + 2х, + 3x, s 6
х, 2 0, х, 2 0.
Transcribed Image Text:5. Maximize subject to 3x1 + x2 + 4x3 z = 3x1 + 3x, + X3 < 18 2x1 + 2x2 + 4xz = 12 x1 2 0, x3 2 0. 6. Minimize z = 5x1 + 2x2 + 6x3 subject to 4x1 + 2x, + x3 z 12 Зx, + 2х, + 3x, s 6 х, 2 0, х, 2 0.
Expert Solution
steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,