5.) Determine the average time a customer spends in the system a. 0.2737 b. 1.5941 c. 0.1942 d. 1.9129 6.) Determine the probability that arriving customers will have to wait for service а. 0.2737 b. 1.5941 c. 0.1942 d. 1.9129
Continuous Probability Distributions
Probability distributions are of two types, which are continuous probability distributions and discrete probability distributions. A continuous probability distribution contains an infinite number of values. For example, if time is infinite: you could count from 0 to a trillion seconds, billion seconds, so on indefinitely. A discrete probability distribution consists of only a countable set of possible values.
Normal Distribution
Suppose we had to design a bathroom weighing scale, how would we decide what should be the range of the weighing machine? Would we take the highest recorded human weight in history and use that as the upper limit for our weighing scale? This may not be a great idea as the sensitivity of the scale would get reduced if the range is too large. At the same time, if we keep the upper limit too low, it may not be usable for a large percentage of the population!
![5.) Determine the average time a customer spends in the system
а. 0.2737
b. 1.5941
c. 0.1942
d. 1.9129
6.) Determine the probability that arriving customers will have to wait for service
а. 0.2737
b. 1.5941
c. 0.1942
d. 1.9129
7.) The probability that 5 customers is in the system.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fee6ff157-8ddf-4439-8a72-146da1ca52f0%2Ff46c41e5-1f98-4777-bc2f-8749df9f9009%2F1al43dj_processed.png&w=3840&q=75)
![2. A Florida coastal community experiences a population increase during the
winter months with seasonal residents arriving from northern states and Canada.
The post office counter has three work stations. The service rate of each postal
clerk is 0.75 customer per minute. The anticipated arrival rate is 1.2 customers
per minute. Assume that customer arrivals follow a Poisson probability
distribution, with an arrival and that service times follow an exponential
probability distribution. Determine the following operating characteristics for the
system:](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fee6ff157-8ddf-4439-8a72-146da1ca52f0%2Ff46c41e5-1f98-4777-bc2f-8749df9f9009%2Fwkzsp3f_processed.png&w=3840&q=75)
![](/static/compass_v2/shared-icons/check-mark.png)
Step by step
Solved in 3 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![A First Course in Probability (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134753119/9780134753119_smallCoverImage.gif)
![A First Course in Probability](https://www.bartleby.com/isbn_cover_images/9780321794772/9780321794772_smallCoverImage.gif)
![A First Course in Probability (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134753119/9780134753119_smallCoverImage.gif)
![A First Course in Probability](https://www.bartleby.com/isbn_cover_images/9780321794772/9780321794772_smallCoverImage.gif)