5. Calculate the variances in position and linear momentum in the coherent state a) of a linear harmonic oscillator. Comment on the product of these variances.
Q: 1. A particle of m moves in the attractive central potential: V(r) = ax6, where a is a constant and…
A: Ans 1: (a) A=(π2b)1/4. (b) E(b)=2mbℏ2+64b315α. (c) bmin=(32ℏ245αm)1/4. (d)…
Q: The wave function(x) = A exp(-) is a normalized eigenfunction of a Hamiltonian for one-dimensional…
A: Using Schrodinger equation we have
Q: Problem 5. (Scattering States). A particle of mass m approaches a potential step barrier Vo located…
A:
Q: Find the normalized stationary states and allowed bound state energies of the Schrodinger equation…
A:
Q: 4. Show that the canonical ensemble probability 1 P. = e`BE Z follows from maximizing S = -k>p, In…
A: Canonical ensemble: In canonical ensemble, temperature, volume, and a number of the particles of…
Q: Consider the 1-dimensional quantum harmonic oscillator of mass u. xeax*/½ is an eigenfunction of the…
A: Given: 1 dimensional quantum harmonic oscillator. We have to show that ψ = xeαx2/2 is eigen…
Q: Given a Gaussian wave function: Y(x) = e-mwx?/h %D Where a is a positive constant 1) Find the…
A:
Q: x a, where Vo> 0.
A:
Q: 1. Solve the Schrodinger equation for a particle of mass, m, in a box. The box is modeled as an…
A: 1) Given: Length of the box is L. Potential inside the box is V0 Calculation: The schematic diagram…
Q: 2. Consider two vectors and ₂ which lie in the x-y plane of the Bloch sphere. Find the relative…
A:
Q: 4. (20%) Consider LTI systems (A, B,C). (a) (10%) Show that (4, B) is controllable if and only if…
A:
Q: 2. A quantum simple harmonic oscillator (SHO) of mass m and angular frequency w has been prepared in…
A:
Q: 2. Consider two vectors, and v₂ which lie in the x-y plane of the Bloch sphere. Find the relative…
A:
Q: 2. Find the best bound on Es for the one-dimensional harmonic oscillator using the trial wave…
A:
Q: 3. Certain surface waves in a fluid travel with phase velocity v(b/2), where b is a constant. Find…
A: We have surface waves in a fluid which travel with a phase velocity vp=b/λ where λ is the…
Q: Prove that [t.V]- v"(2) + ĥ v'c p. am im V: V(x) am da ind 70i for a free parlicle and for ground…
A:
Q: 1. For the n 4 state of the finite square well potential, sketch: (a) the wave function (b) the…
A:
Q: 2. Consider a density operator p. Show that tr (p²) < 1 with tr (p²) = 1 if and only if p is a pure…
A: Introduction: Consider an ensemble of given objects in the states. If all the objects are in the…
Q: 1- by using the Covariance theory to find the wave function of a harmonic oscillator, we use the…
A:
Q: sin(12x) is a suitable wavefunction for a 1-dimensional particle-in-a-box where the box = boundaries…
A: The requirements of a wavefunction are, The wave function must be single valued The wave function…
Q: 10. Sketch the first four wavefunctions (n = 1 through n = 4) for the particle in a box, and sketch…
A:
Q: A particle is described by the wavefunction below, where L = 1 nanometer. a) Determine the value of…
A:
Q: 1. A particle of m moves in the attractive central potential: V(r) = ax6, where a is a constant and…
A: The objective of the question is to compute the normalization constant A, calculate the ground state…
![5. Calculate the variances in position and linear momentum in the coherent state Ja) of a linear
harmonic oscillator. Comment on the product of these variances.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ffcf6d59b-0ce3-4308-b368-fbef9acc61ed%2F2f938674-0e43-47bf-a5b5-9b92017efe25%2F8yvldpi_processed.jpeg&w=3840&q=75)
![](/static/compass_v2/shared-icons/check-mark.png)
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
- 7. Consider a particle in an infinite square well centered at x = 0 in one of its stationary states. For this problem, you may look up any integrals. Some useful ones are given in Harris. a) Compute (x) and (pr) for arbitrary n. Do this by direct computation but then describe how you could have found these results using symmetry (the symmetry can either be symmetry in the physical system, such as the shape of the wave function, or symmetry related to the expectation value integral, such as the shape of the integrand). b) Using your answer to part a), show that the uncertainty in the momentum is Apx nh for arbitrary n. Do this two ways: (i) first by using your answer to part a) and directly computating (p2) (via an integral) and (ii) by using your answer to part a) and relating (p2) to the kinetic energy operator. c) Show that the uncertainty principle holds for the ground state. 2L -QUESTION 7 Use the Schrödinger equation to calculate the energy of a 1-dimensional particle-in-a-box system in which the normalized wave function is 4' = e sin(6x). The box boundaries are at x=0 and x=r/3. The potential energy is zero when 0 < x <- and o outside of these boundaries. 18h? m h2 8m h2 36n2m none are correct1.The odd parity eigenstates of the infinte square well , with potential V = 0 in the range −L/2 ≤ ? ≤ L/2, are given by : (see figure) and have Ψn(x, t) = 0 elsewhere , for n=2 , 4 , 6 etc a) Sketch the potential of this system , including in your sketch the positions of the lowest three energy levels . Indicate in your sketch the form of the wavefunction for a particle in each of these energy levels , and state which of the wavefunctions you have drawn could be decirbed by the Ψn written above (see figure) . b) Calculate the expectation value of momentum , ⟨p⟩ for a particle with n=2 c) Calculate the expectation value of momentum squared ⟨p 2⟩ , for a particle with n = 2 . Hint : you may use the mathematical identiy sin2 x = 1/2 (1 − cos 2x) without proof .