'5 f(x) = -9 evaluate the following. J2 2 Given f(x) dx = 3 and (a) f(x) dx (b) f(x) dx '3 (c) f(x) dx (d) -8f(x) dx

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

Please help me solve this 

**Problem Statement:**

Given:

\[
\int_{0}^{2} f(x) \, dx = 3 
\]

and 

\[
\int_{2}^{5} f(x) \, dx = -9
\]

evaluate the following integrals:

---

**(a)** 

\[
\int_{0}^{5} f(x) \, dx
\]

*Solution:*  
Calculate the integral from 0 to 5 using the given information.

\[ 
\int_{0}^{5} f(x) \, dx = \int_{0}^{2} f(x) \, dx + \int_{2}^{5} f(x) \, dx 
\]

\[ 
= 3 + (-9) = -6 
\]

---

**(b)** 

\[
\int_{5}^{2} f(x) \, dx
\]

*Solution:*  
Reverse the integral. Reversing the limits of integration changes the sign.

\[ 
\int_{5}^{2} f(x) \, dx = -\int_{2}^{5} f(x) \, dx 
\]

\[ 
= -(-9) = 9 
\]

---

**(c)**

\[
\int_{3}^{3} f(x) \, dx
\]

*Solution:*  
The integral of any function over an interval of zero length is zero.

\[ 
\int_{3}^{3} f(x) \, dx = 0 
\]

---

**(d)**

\[
\int_{2}^{5} -8f(x) \, dx
\]

*Solution:*  
Factor out the constant (-8) from the integral.

\[ 
\int_{2}^{5} -8f(x) \, dx = -8 \int_{2}^{5} f(x) \, dx 
\]

\[ 
= -8(-9) = 72 
\]

---  

These solutions use the properties of definite integrals, including linearity and changes in limits of integration.
Transcribed Image Text:**Problem Statement:** Given: \[ \int_{0}^{2} f(x) \, dx = 3 \] and \[ \int_{2}^{5} f(x) \, dx = -9 \] evaluate the following integrals: --- **(a)** \[ \int_{0}^{5} f(x) \, dx \] *Solution:* Calculate the integral from 0 to 5 using the given information. \[ \int_{0}^{5} f(x) \, dx = \int_{0}^{2} f(x) \, dx + \int_{2}^{5} f(x) \, dx \] \[ = 3 + (-9) = -6 \] --- **(b)** \[ \int_{5}^{2} f(x) \, dx \] *Solution:* Reverse the integral. Reversing the limits of integration changes the sign. \[ \int_{5}^{2} f(x) \, dx = -\int_{2}^{5} f(x) \, dx \] \[ = -(-9) = 9 \] --- **(c)** \[ \int_{3}^{3} f(x) \, dx \] *Solution:* The integral of any function over an interval of zero length is zero. \[ \int_{3}^{3} f(x) \, dx = 0 \] --- **(d)** \[ \int_{2}^{5} -8f(x) \, dx \] *Solution:* Factor out the constant (-8) from the integral. \[ \int_{2}^{5} -8f(x) \, dx = -8 \int_{2}^{5} f(x) \, dx \] \[ = -8(-9) = 72 \] --- These solutions use the properties of definite integrals, including linearity and changes in limits of integration.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 6 steps

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning