5 2] -5 -3 3 has an eigenvector i 3 1 6 The matrix B 2 3 Find the eigenvalue for this eigenvector.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Find an eigenvector for this eigenvalue.
Note: You should solve the following problem WITHOUT computing all eigenvalues.
5 2
-3 3 has an eigenvector i
3 1
6
The matrix B
-5
2
3
Find the eigenvalue for this eigenvector.
=
Transcribed Image Text:Find an eigenvector for this eigenvalue. Note: You should solve the following problem WITHOUT computing all eigenvalues. 5 2 -3 3 has an eigenvector i 3 1 6 The matrix B -5 2 3 Find the eigenvalue for this eigenvector. =
4 -5 -9
The matrix A = 0
0 -3 has an eigenvalue A = -3.
1
-2 -3
Transcribed Image Text:4 -5 -9 The matrix A = 0 0 -3 has an eigenvalue A = -3. 1 -2 -3
Expert Solution
Step 1

Since you have not mentioned clearly which question to attempt we have answered the first question with matrix B. If you want other question to be answered kindly repost the question and mention the question to be answered.

Given matrix B=652-5-33331 and eigen vector v=-12-1.

If v is eigen vector of B and λ is the corresponding eigenvalue, we know that

Bv=λv

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Matrix Eigenvalues and Eigenvectors
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,