4y" + (y') = 0
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
![### Differential Equation Problem
**Solve completely:**
\[4y'' + (y')^3 = 0\]
**Solution Steps:**
1. **Identify the Type of Equation:**
- This is a second-order differential equation where \( y'' \) represents the second derivative of \( y \) with respect to \( x \), and \( y' \) represents the first derivative of \( y \).
2. **Transformation to a Simpler Form:**
- To solve this, let's use \( v = y' \), where \( v \) is a function of \( y \). Then \( y'' = v \frac{dv}{dy} \).
- Substitute these into the given equation:
\[
4v \frac{dv}{dy} + v^3 = 0
\]
3. **Separation of Variables:**
- Factor out common terms and separate variables:
\[
v (4 \frac{dv}{dy} + v^2) = 0
\]
\[
v = 0 \quad \text{or} \quad 4 \frac{dv}{dy} = -v^2
\]
4. **Solving for \( v \):**
- If \( v = 0 \), \( y' = 0 \Rightarrow y = C_1 \).
- Otherwise:
\[
4 \frac{dv}{dy} = -v^2
\]
\[
\frac{4}{v^2} dv = -dy
\]
5. **Integrate Both Sides:**
- For the non-trivial solution:
\[
\int \frac{4}{v^2} dv = -\int dy
\]
\[
-\frac{4}{v} = y + C_2 \quad \Rightarrow \quad v = -\frac{4}{y + C_2}
\]
6. **Backward Transformation:**
- Substitute back \( v = y' \):
\[
y' = -\frac{4}{y + C_2}
\]
- Separate variables again for integration:
\[
(y + C_2) dy = -4 dx
\]
\[
\int (y](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F20e00ab3-e90c-493d-a4f6-cdfa310ac890%2F60c7680f-6ef3-4047-b5f1-d64ae410c18d%2Fkitx7hp_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Differential Equation Problem
**Solve completely:**
\[4y'' + (y')^3 = 0\]
**Solution Steps:**
1. **Identify the Type of Equation:**
- This is a second-order differential equation where \( y'' \) represents the second derivative of \( y \) with respect to \( x \), and \( y' \) represents the first derivative of \( y \).
2. **Transformation to a Simpler Form:**
- To solve this, let's use \( v = y' \), where \( v \) is a function of \( y \). Then \( y'' = v \frac{dv}{dy} \).
- Substitute these into the given equation:
\[
4v \frac{dv}{dy} + v^3 = 0
\]
3. **Separation of Variables:**
- Factor out common terms and separate variables:
\[
v (4 \frac{dv}{dy} + v^2) = 0
\]
\[
v = 0 \quad \text{or} \quad 4 \frac{dv}{dy} = -v^2
\]
4. **Solving for \( v \):**
- If \( v = 0 \), \( y' = 0 \Rightarrow y = C_1 \).
- Otherwise:
\[
4 \frac{dv}{dy} = -v^2
\]
\[
\frac{4}{v^2} dv = -dy
\]
5. **Integrate Both Sides:**
- For the non-trivial solution:
\[
\int \frac{4}{v^2} dv = -\int dy
\]
\[
-\frac{4}{v} = y + C_2 \quad \Rightarrow \quad v = -\frac{4}{y + C_2}
\]
6. **Backward Transformation:**
- Substitute back \( v = y' \):
\[
y' = -\frac{4}{y + C_2}
\]
- Separate variables again for integration:
\[
(y + C_2) dy = -4 dx
\]
\[
\int (y
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)