49. Sigma notation Evaluate the following expressions. 10 Σκ k k=1 6 b. Σ (2k + 1) k=1 4 a. C. k2 k=1 5 d. Σ(1 + n?) n=1

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

(Question 49 a-d and question 56)

Show all work, thank you!

**Approximating Areas with a Calculator**

Use a calculator and right Riemann sums to approximate the area of the given region. Present your calculations in a table showing the approximations for \( n = 10, 30, 60, \) and \( 80 \) subintervals. Make a conjecture about the limit of Riemann sums as \( n \to \infty \).

**55.** The region bounded by the graph of \( f(x) = 12 - 3x^2 \) and the x-axis on the interval \([-1, 1]\).

**56.** The region bounded by the graph of \( f(x) = 3x^2 + 1 \) and the x-axis on the interval \([-1, 1]\).

**57.** The region bounded by the graph of \( f(x) = \frac{1 - \cos x}{2} \) and the x-axis on the interval \([-π, π]\).
Transcribed Image Text:**Approximating Areas with a Calculator** Use a calculator and right Riemann sums to approximate the area of the given region. Present your calculations in a table showing the approximations for \( n = 10, 30, 60, \) and \( 80 \) subintervals. Make a conjecture about the limit of Riemann sums as \( n \to \infty \). **55.** The region bounded by the graph of \( f(x) = 12 - 3x^2 \) and the x-axis on the interval \([-1, 1]\). **56.** The region bounded by the graph of \( f(x) = 3x^2 + 1 \) and the x-axis on the interval \([-1, 1]\). **57.** The region bounded by the graph of \( f(x) = \frac{1 - \cos x}{2} \) and the x-axis on the interval \([-π, π]\).
**49. Sigma Notation: Evaluate the following expressions.**

a. \( \sum_{k=1}^{10} k \)

b. \( \sum_{k=1}^{6} (2k + 1) \)

c. \( \sum_{k=1}^{4} k^2 \)

d. \( \sum_{n=1}^{5} (1 + n^2) \)

e. \( \sum_{m=1}^{3} \frac{2m + 2}{3} \)

f. \( \sum_{j=1}^{3} (3j - 4) \)

g. \( \sum_{p=1}^{5} (2p + p^2) \)
Transcribed Image Text:**49. Sigma Notation: Evaluate the following expressions.** a. \( \sum_{k=1}^{10} k \) b. \( \sum_{k=1}^{6} (2k + 1) \) c. \( \sum_{k=1}^{4} k^2 \) d. \( \sum_{n=1}^{5} (1 + n^2) \) e. \( \sum_{m=1}^{3} \frac{2m + 2}{3} \) f. \( \sum_{j=1}^{3} (3j - 4) \) g. \( \sum_{p=1}^{5} (2p + p^2) \)
Expert Solution
steps

Step by step

Solved in 6 steps with 12 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning