4. Use Liapunov's function V(x) = x² + x² + x² to prove that the origin is an asymptotically stable equilibrium of the system .18 || = −x₂ − x₁x² + x² – x³ x₁ + x²-x² _—X1X3 — X3x² — x2x² – x²

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
4. Use Liapunov's function V(x) = x² + x² + x² to prove that the origin is
an asymptotically stable equilibrium of the system
.18
||
−x₂ − x₁x² + x² – x³
x₁ + x²-x²
-X1X3 — X3x² − x2x² – x²]
Transcribed Image Text:4. Use Liapunov's function V(x) = x² + x² + x² to prove that the origin is an asymptotically stable equilibrium of the system .18 || −x₂ − x₁x² + x² – x³ x₁ + x²-x² -X1X3 — X3x² − x2x² – x²]
Expert Solution
Step 1: Asymptotically stability check

Noted that for given system of non linear differential equations

x with. on top equals open square brackets table row cell negative x subscript 2 minus x subscript 1 x subscript 2 squared plus x subscript 3 squared minus x subscript 1 cubed end cell row cell x subscript 1 plus x subscript 3 cubed minus x subscript 2 cubed end cell row cell negative x subscript 1 x subscript 3 minus x subscript 3 x subscript 1 squared minus x subscript 2 x subscript 3 squared minus x subscript 3 to the power of 5 end cell end table close square brackets and given Liapunov function V left parenthesis x right parenthesis equals x subscript 1 squared plus x subscript 2 squared plus x subscript 3 squared

equilibrium point open parentheses 0 comma 0 close parentheses is said to be asymptotically stable if the  following expression

fraction numerator partial differential V over denominator partial differential x subscript 1 end fraction. space stack x subscript 1 with. on top plus fraction numerator partial differential V over denominator partial differential x subscript 2 end fraction. space stack x subscript 2 with. on top plus fraction numerator partial differential V over denominator partial differential x subscript 3 end fraction. space stack x subscript 3 with. on top is negative definite,

In other words,fraction numerator partial differential V over denominator partial differential x subscript 1 end fraction. space stack x subscript 1 with. on top plus fraction numerator partial differential V over denominator partial differential x subscript 2 end fraction. space stack x subscript 2 with. on top plus fraction numerator partial differential V over denominator partial differential x subscript 3 end fraction. space stack x subscript 3 with. on top less than 0 comma f o r space a l l space open parentheses x subscript 1 comma x subscript 2 comma x subscript 3 close parentheses not equal to open parentheses 0 comma 0 comma 0 close parentheses

Now noted that fraction numerator partial differential V over denominator partial differential x subscript 1 end fraction. space stack x subscript 1 with. on top plus fraction numerator partial differential V over denominator partial differential x subscript 2 end fraction. space stack x subscript 2 with. on top plus fraction numerator partial differential V over denominator partial differential x subscript 3 end fraction. space stack x subscript 3 with. on top equalsnegative open square brackets 2 open parentheses x subscript 1 x subscript 2 close parentheses squared plus 2 open parentheses x subscript 1 x subscript 3 close parentheses squared plus 2 open parentheses x subscript 1 close parentheses to the power of 4 plus 2 open parentheses x subscript 2 close parentheses to the power of 4 plus 2 open parentheses x subscript 3 close parentheses to the power of 6 close square brackets

Obviously ,R.H.S term of above less than 0 commaf o r space a l l space open parentheses x subscript 1 comma x subscript 2 comma x subscript 3 close parentheses not equal to open parentheses 0 comma 0 comma 0 close parentheses,because inside the braket ,this is sum of square terms ,equal to zero implies each variavle indicate zero.



steps

Step by step

Solved in 3 steps with 10 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,