4. True or False? If true, prove. If false, provide a counterexample. a. If same size matrices A and B have exactly the same eigenvalues (including multiplicities), they must be similar. b. If a square matrix A is diagonalizable, so is Ak, for any positive integer k. C. If a square invertible matrix A is diagonalizable, so is A-¹. d. If a square matrix A is invertible, then it's diagonalizable. e. For any m x n matrix A, the matrix AT A is orthogonally diagonalizable. f. Let A be a symmetric n x n matrix. Suppose ₁ and ₂ are eigenvectors corresponding to two distinct eigenvalues of A. Then, ||x₁ + x₂ || = ||X₁|| + ||x₂||. g. If an n x n matrix A has only real eigenvalues, then it must be symmetric.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**4. True or False? If true, prove. If false, provide a counterexample.**

a. If same size matrices \(A\) and \(B\) have exactly the same eigenvalues (including multiplicities), they must be similar.

b. If a square matrix \(A\) is diagonalizable, so is \(A^k\), for any positive integer \(k\).

c. If a square invertible matrix \(A\) is diagonalizable, so is \(A^{-1}\).

d. If a square matrix \(A\) is invertible, then it’s diagonalizable.

e. For any \(m \times n\) matrix \(A\), the matrix \(A^T A\) is orthogonally diagonalizable.

f. Let \(A\) be a symmetric \(n \times n\) matrix. Suppose \(\mathbf{x}_1\) and \(\mathbf{x}_2\) are eigenvectors corresponding to two distinct eigenvalues of \(A\). Then, \(\|\mathbf{x}_1 + \mathbf{x}_2\| = \|\mathbf{x}_1\| + \|\mathbf{x}_2\|\).

g. If an \(n \times n\) matrix \(A\) has only real eigenvalues, then it must be symmetric.
Transcribed Image Text:**4. True or False? If true, prove. If false, provide a counterexample.** a. If same size matrices \(A\) and \(B\) have exactly the same eigenvalues (including multiplicities), they must be similar. b. If a square matrix \(A\) is diagonalizable, so is \(A^k\), for any positive integer \(k\). c. If a square invertible matrix \(A\) is diagonalizable, so is \(A^{-1}\). d. If a square matrix \(A\) is invertible, then it’s diagonalizable. e. For any \(m \times n\) matrix \(A\), the matrix \(A^T A\) is orthogonally diagonalizable. f. Let \(A\) be a symmetric \(n \times n\) matrix. Suppose \(\mathbf{x}_1\) and \(\mathbf{x}_2\) are eigenvectors corresponding to two distinct eigenvalues of \(A\). Then, \(\|\mathbf{x}_1 + \mathbf{x}_2\| = \|\mathbf{x}_1\| + \|\mathbf{x}_2\|\). g. If an \(n \times n\) matrix \(A\) has only real eigenvalues, then it must be symmetric.
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,