4. True or False? If true, prove. If false, provide a counterexample. a. If same size matrices A and B have exactly the same eigenvalues (including multiplicities), they must be similar. b. If a square matrix A is diagonalizable, so is Ak, for any positive integer k. C. If a square invertible matrix A is diagonalizable, so is A-¹. d. If a square matrix A is invertible, then it's diagonalizable. e. For any m x n matrix A, the matrix AT A is orthogonally diagonalizable. f. Let A be a symmetric n x n matrix. Suppose ₁ and ₂ are eigenvectors corresponding to two distinct eigenvalues of A. Then, ||x₁ + x₂ || = ||X₁|| + ||x₂||. g. If an n x n matrix A has only real eigenvalues, then it must be symmetric.
4. True or False? If true, prove. If false, provide a counterexample. a. If same size matrices A and B have exactly the same eigenvalues (including multiplicities), they must be similar. b. If a square matrix A is diagonalizable, so is Ak, for any positive integer k. C. If a square invertible matrix A is diagonalizable, so is A-¹. d. If a square matrix A is invertible, then it's diagonalizable. e. For any m x n matrix A, the matrix AT A is orthogonally diagonalizable. f. Let A be a symmetric n x n matrix. Suppose ₁ and ₂ are eigenvectors corresponding to two distinct eigenvalues of A. Then, ||x₁ + x₂ || = ||X₁|| + ||x₂||. g. If an n x n matrix A has only real eigenvalues, then it must be symmetric.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![**4. True or False? If true, prove. If false, provide a counterexample.**
a. If same size matrices \(A\) and \(B\) have exactly the same eigenvalues (including multiplicities), they must be similar.
b. If a square matrix \(A\) is diagonalizable, so is \(A^k\), for any positive integer \(k\).
c. If a square invertible matrix \(A\) is diagonalizable, so is \(A^{-1}\).
d. If a square matrix \(A\) is invertible, then it’s diagonalizable.
e. For any \(m \times n\) matrix \(A\), the matrix \(A^T A\) is orthogonally diagonalizable.
f. Let \(A\) be a symmetric \(n \times n\) matrix. Suppose \(\mathbf{x}_1\) and \(\mathbf{x}_2\) are eigenvectors corresponding to two distinct eigenvalues of \(A\). Then, \(\|\mathbf{x}_1 + \mathbf{x}_2\| = \|\mathbf{x}_1\| + \|\mathbf{x}_2\|\).
g. If an \(n \times n\) matrix \(A\) has only real eigenvalues, then it must be symmetric.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fab289986-80a9-4865-81ee-c0ba3a526505%2Fd3cb1141-ab60-49e4-9a50-019fa2cd5070%2Fkfcju1_processed.png&w=3840&q=75)
Transcribed Image Text:**4. True or False? If true, prove. If false, provide a counterexample.**
a. If same size matrices \(A\) and \(B\) have exactly the same eigenvalues (including multiplicities), they must be similar.
b. If a square matrix \(A\) is diagonalizable, so is \(A^k\), for any positive integer \(k\).
c. If a square invertible matrix \(A\) is diagonalizable, so is \(A^{-1}\).
d. If a square matrix \(A\) is invertible, then it’s diagonalizable.
e. For any \(m \times n\) matrix \(A\), the matrix \(A^T A\) is orthogonally diagonalizable.
f. Let \(A\) be a symmetric \(n \times n\) matrix. Suppose \(\mathbf{x}_1\) and \(\mathbf{x}_2\) are eigenvectors corresponding to two distinct eigenvalues of \(A\). Then, \(\|\mathbf{x}_1 + \mathbf{x}_2\| = \|\mathbf{x}_1\| + \|\mathbf{x}_2\|\).
g. If an \(n \times n\) matrix \(A\) has only real eigenvalues, then it must be symmetric.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)