4. Transform the integral formula [[+++] f(0)+3f 1 8 so that it can be used for f(x)dx. 3

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

answer 4

4. Transform the integral formula
2
[S0xdx = [(0) +35 (1) + 35 ( ²3 ) + 5]
3f
8
3
b
so that it can be used for f(x)dx.
(a) 1 x de
dx.
a
5. Show how the Newton-Cotes formula
1
2
| S(x) dx = ²(0) + ² / ( 1 ) + 1 sa
+=f(1)
6
3 2
can be used for f(x)dx. Apply this result to evaluate
(b)
sin t
dt.
Transcribed Image Text:4. Transform the integral formula 2 [S0xdx = [(0) +35 (1) + 35 ( ²3 ) + 5] 3f 8 3 b so that it can be used for f(x)dx. (a) 1 x de dx. a 5. Show how the Newton-Cotes formula 1 2 | S(x) dx = ²(0) + ² / ( 1 ) + 1 sa +=f(1) 6 3 2 can be used for f(x)dx. Apply this result to evaluate (b) sin t dt.
Expert Solution
Step 1

The given integral formula is-

01f(x)dx=18f(0)+3f13+3f23+f1

It can be seen that,

The points of division are 0,13,23,1.

Therefore,

The number of sub-intervals are n=3.

So, 

h=b-an=13

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,