4. Let A = 3123, 3 -1 -2 1 -2 -6 -6 2 -2 -2 -12 -3 -6 -16 Find an orthonormal basis for the eigenspace of A that corresponds to the eigenvalue >= 2.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Can you please help me with this problem, I am very desperate because I don't know how to do this problem. This problem has to be done using the matrix way only the matrix way.

can you please do this matrix way and can you do it step by step please so I can understand it.

again this has to be done using the matrix way 

### Problem Statement

Given the matrix 

\[ A = \begin{bmatrix} 3 & -1 & -2 & -6 \\ 1 & 1 & -2 & -6 \\ 2 & -2 & -2 & -12 \\ 3 & -3 & -6 & -16 \end{bmatrix} \]

Find an **orthonormal basis** for the eigenspace of A that corresponds to the eigenvalue \(\lambda = 2\).

### Solution Framework

This problem involves several steps to find the orthonormal basis for the eigenspace corresponding to a given eigenvalue.

1. **Find the Eigenspace:**
   - Compute the matrix \( A - 2I \).
   - Solve the homogeneous system \((A - 2I)\mathbf{x} = 0\) to find the eigenspace.

2. **Apply the Gram-Schmidt Process:**
   - Use the Gram-Schmidt orthogonalization process to get an orthogonal basis from the eigenspace vectors found.
 
3. **Normalize the Vectors:**
   - Normalize the orthogonal vectors to get the orthonormal basis.

### Detailed Solution

1. **Compute \( A - 2I \):**

\[ A - 2I = \begin{bmatrix} 3 & -1 & -2 & -6 \\ 1 & 1 & -2 & -6 \\ 2 & -2 & -2 & -12 \\ 3 & -3 & -6 & -16 \end{bmatrix} - \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & -1 & -2 & -6 \\ 1 & -1 & -2 & -6 \\ 2 & -2 & -4 & -12 \\ 3 & -3 & -6 & -18 \end{bmatrix} \]

2. **Solve \((A - 2I)\mathbf{x} = 0\) to find the eigenspace:**

This involves solving the system of linear equations represented by the matrix \( A - 2I \). The reduced row echelon
Transcribed Image Text:### Problem Statement Given the matrix \[ A = \begin{bmatrix} 3 & -1 & -2 & -6 \\ 1 & 1 & -2 & -6 \\ 2 & -2 & -2 & -12 \\ 3 & -3 & -6 & -16 \end{bmatrix} \] Find an **orthonormal basis** for the eigenspace of A that corresponds to the eigenvalue \(\lambda = 2\). ### Solution Framework This problem involves several steps to find the orthonormal basis for the eigenspace corresponding to a given eigenvalue. 1. **Find the Eigenspace:** - Compute the matrix \( A - 2I \). - Solve the homogeneous system \((A - 2I)\mathbf{x} = 0\) to find the eigenspace. 2. **Apply the Gram-Schmidt Process:** - Use the Gram-Schmidt orthogonalization process to get an orthogonal basis from the eigenspace vectors found. 3. **Normalize the Vectors:** - Normalize the orthogonal vectors to get the orthonormal basis. ### Detailed Solution 1. **Compute \( A - 2I \):** \[ A - 2I = \begin{bmatrix} 3 & -1 & -2 & -6 \\ 1 & 1 & -2 & -6 \\ 2 & -2 & -2 & -12 \\ 3 & -3 & -6 & -16 \end{bmatrix} - \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & -1 & -2 & -6 \\ 1 & -1 & -2 & -6 \\ 2 & -2 & -4 & -12 \\ 3 & -3 & -6 & -18 \end{bmatrix} \] 2. **Solve \((A - 2I)\mathbf{x} = 0\) to find the eigenspace:** This involves solving the system of linear equations represented by the matrix \( A - 2I \). The reduced row echelon
Expert Solution
steps

Step by step

Solved in 6 steps with 5 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,