4. Find the solution of the vibrating string problem ᎧᎳ ᎧᎳ + əx² dy² with the boundary conditions W (0, y) = W (1, y) = 0, ᎧᎳ 1 ㅠ = cos(- 2πx) - 3 sin(5x), ду W(x,0)= = 0, 0≤x≤1, 0≤ y ≤ 1, 3π -(x,0) = cos(- +3πx). 2 Trigonometric formula cos(A + B) = cos A cos B - sin A sin B.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
4. Find the solution of the vibrating string problem
0²W ᎧᎳ
+
əx² dy²
with the boundary conditions W (0, y) = W(1, y) = 0,
1
ᎧᎳ
=cc
2
ду
W(x, 0)
=
= 0,
0≤x≤1, 0≤ y ≤ 1,
ㅠ
cos( 2πx) - 3 sin(5x),
2
Trigonometric formula cos(A + B) = cos A cos B
3π
-(x,0) = = cos(- +3πx).
2
sin Asin B.
Transcribed Image Text:4. Find the solution of the vibrating string problem 0²W ᎧᎳ + əx² dy² with the boundary conditions W (0, y) = W(1, y) = 0, 1 ᎧᎳ =cc 2 ду W(x, 0) = = 0, 0≤x≤1, 0≤ y ≤ 1, ㅠ cos( 2πx) - 3 sin(5x), 2 Trigonometric formula cos(A + B) = cos A cos B 3π -(x,0) = = cos(- +3πx). 2 sin Asin B.
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,