4. Exercise §5.2 # 9. Let p(x) be a function of period 7. If o(r) = 1ansin(ne) for all z, find the odd coefficients.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
4. Exercise §5.2 #9. Let p(x) be a function of period . If (x) = ansin(ne) for all , find the
odd coefficients.
n=1
Transcribed Image Text:4. Exercise §5.2 #9. Let p(x) be a function of period . If (x) = ansin(ne) for all , find the odd coefficients. n=1
Expert Solution
Step 1: ''Introduction to the solution''

Let ϕ left parenthesis x right parenthesis space  be a  function of period straight pi.

Let ϕ left parenthesis x right parenthesis equals sum from n equals 1 to infinity of space a subscript n sin left parenthesis n x right parenthesis......... left parenthesis 1 right parenthesis comma for all x element of straight real numbers

We  have to calculate  the odd coefficients in the Fourier series(1).

Then, integral subscript 0 superscript straight pi ϕ left parenthesis x right parenthesis sin left parenthesis m x right parenthesis equals sum from n equals 1 to infinity of space a subscript n space end subscript sin left parenthesis n x right parenthesis sin left parenthesis m x right parenthesis

rightwards double arrow integral subscript 0 superscript straight pi ϕ left parenthesis x right parenthesis sin left parenthesis m x right parenthesis equals 1 half sum from n equals 1 to infinity of space open parentheses 2 sin left parenthesis m x right parenthesis sin left parenthesis n x right parenthesis close parentheses........ left parenthesis 2 right parenthesis


steps

Step by step

Solved in 3 steps with 13 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,