4. -0-0-0-| - [¯-2], ✓= [3³], V W 1. u. u, v. u, and 2. w. w, xw, and x-w W. W 3. 1 W. W 1 u u u= W u v.u u-u 5. (UV)V 3 -2 3

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

just 1 and 5

### Linear Algebra Vector Operations

In this section, we explore some fundamental operations involving vectors. Let’s consider the following vectors for our examples:

\[ \mathbf{u} = \begin{bmatrix}
-1 \\
2
\end{bmatrix} , \quad \mathbf{v} = \begin{bmatrix}
2 \\
3
\end{bmatrix} , \quad \mathbf{w} = \begin{bmatrix}
3 \\
-1 \\
-5
\end{bmatrix} , \quad \mathbf{x} = \begin{bmatrix}
6 \\
-2 \\
3
\end{bmatrix} \]

We will examine and compute the following operations:

1. **Dot Product Operations**:
   - \( \mathbf{u} \cdot \mathbf{u} \)
   - \( \mathbf{v} \cdot \mathbf{u} \)
   - \( \frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \)

2. **Dot Product with Different Vectors**:
   - \( \mathbf{w} \cdot \mathbf{w} \)
   - \( \mathbf{x} \cdot \mathbf{w} \)
   - \( \frac{\mathbf{x} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} \)

3. **Scalar Multiplications**:
   - \( \frac{1}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w} \)

4. **Projection of \( \mathbf{u} \) onto Itself**:
   - \( \frac{1}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} \)

5. **Projection of \( \mathbf{u} \) onto \( \mathbf{v} \)**:
   - \( \left( \frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \right) \mathbf{v} \)

### Detailed Explanations

- **Dot Product**: The dot product of two vectors \( \mathbf{a} \) and \( \mathbf{b} \) is given by \( \mathbf{a} \cd
Transcribed Image Text:### Linear Algebra Vector Operations In this section, we explore some fundamental operations involving vectors. Let’s consider the following vectors for our examples: \[ \mathbf{u} = \begin{bmatrix} -1 \\ 2 \end{bmatrix} , \quad \mathbf{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} , \quad \mathbf{w} = \begin{bmatrix} 3 \\ -1 \\ -5 \end{bmatrix} , \quad \mathbf{x} = \begin{bmatrix} 6 \\ -2 \\ 3 \end{bmatrix} \] We will examine and compute the following operations: 1. **Dot Product Operations**: - \( \mathbf{u} \cdot \mathbf{u} \) - \( \mathbf{v} \cdot \mathbf{u} \) - \( \frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \) 2. **Dot Product with Different Vectors**: - \( \mathbf{w} \cdot \mathbf{w} \) - \( \mathbf{x} \cdot \mathbf{w} \) - \( \frac{\mathbf{x} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} \) 3. **Scalar Multiplications**: - \( \frac{1}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w} \) 4. **Projection of \( \mathbf{u} \) onto Itself**: - \( \frac{1}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} \) 5. **Projection of \( \mathbf{u} \) onto \( \mathbf{v} \)**: - \( \left( \frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \right) \mathbf{v} \) ### Detailed Explanations - **Dot Product**: The dot product of two vectors \( \mathbf{a} \) and \( \mathbf{b} \) is given by \( \mathbf{a} \cd
Expert Solution
steps

Step by step

Solved in 3 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,