4) An idempotent element in 5) The ring Z;[x]/is: ZĄ[x]is: a) Non-commutative ring а) х with identity b) x b) Integral Domain c) x²+x+1 c) Field d) 1+x d) None a

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
factor ring part 3 4 5
Table 1: Multiplication in Za[z]/ {r° + 1)
2+z+1 r² +z__z+1 ²+1
7+x+1 x* +I x+1 r*+1
+z+1 r +1 r²+z z+1
² +x+1 r+1 2+1 r+x
1
z* +z+1 +z+1 r*+z+1 r²+z+1 r*+z+1
2+1
+z z+1 r² +1
z+1 r²+1 r² +z
+1 +z z+1
z+1
+ 2+1
z+1
2+1
z+1
2 +1
z+1
1) The inverse of x' is:
2) The value that replaces xª is
3) (x² +1)* is equal to
a) x+1
а) х +1
а) х +1
b) x +1
b) x? +1
b) x+1
c) x
c) x
c) x
d) x
d) x2
d) x
4) An idempotent element in
5) The ring Z;[x]/< x³ +1 > is:
Z[x]/< x³ +1 >is:
a) Non-commutative ring
а) х
with identity
b) x?
b) Integral Domain
c) x+x+1
c) Field
d) 1+x
d) None
a
b
d
1)
2)
3)
4)
5)
Transcribed Image Text:Table 1: Multiplication in Za[z]/ {r° + 1) 2+z+1 r² +z__z+1 ²+1 7+x+1 x* +I x+1 r*+1 +z+1 r +1 r²+z z+1 ² +x+1 r+1 2+1 r+x 1 z* +z+1 +z+1 r*+z+1 r²+z+1 r*+z+1 2+1 +z z+1 r² +1 z+1 r²+1 r² +z +1 +z z+1 z+1 + 2+1 z+1 2+1 z+1 2 +1 z+1 1) The inverse of x' is: 2) The value that replaces xª is 3) (x² +1)* is equal to a) x+1 а) х +1 а) х +1 b) x +1 b) x? +1 b) x+1 c) x c) x c) x d) x d) x2 d) x 4) An idempotent element in 5) The ring Z;[x]/< x³ +1 > is: Z[x]/< x³ +1 >is: a) Non-commutative ring а) х with identity b) x? b) Integral Domain c) x+x+1 c) Field d) 1+x d) None a b d 1) 2) 3) 4) 5)
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,