34.5 Complexity and Chaos Much of what impresses us about physics is related to the underlying connections and basic simplicity of the laws we have discovered. The language of physics is precise and well defined because many basic systems we study are simple enough that we can perform controlled experiments and discover unambiguous relationships. Our most spectacular successes, such as the prediction of previously unobserved particles, come from the simple underlying patterns we have been able to recognize. But there are systems of interest to physicists that are inherently complex. The simple laws of physics apply, of course, but complex systems may reveal patterns that simple systems do not. The emerging field of complexity is devoted to the study of complex systems, including those outside the traditional bounds of physics. Of particular interest is the ability of complex systems to adapt and evolve. What are some examples of complex adaptive systems? One is the primordial ocean. When the oceans first formed, they were a random mix of elements and compounds that obeyed the laws of physics and chemistry. In a relatively short geological time (about 500 million years), life had emerged. Laboratory simulations indicate that the emergence of life was far too fast to have come from random combinations of compounds, even if driven by lightning and heat. There must be an underlying ability of the complex system to organize itself, resulting in the self-replication we recognize as life. Living entities, even at the unicellular level, are highly organized and systematic. Systems of living organisms are themselves complex adaptive systems. The grandest of these evolved into the biological system we have today, leaving traces in the geological record of steps taken along the way. Complexity as a discipline examines complex systems, how they adapt and evolve, looking for similarities with other complex adaptive systems. Can, for example, parallels be drawn between biological evolution and the evolution of economic systems? Economic systems do emerge quickly, they show tendencies for self-organization, they are complex (in the number and types of transactions), and they adapt and evolve. Biological systems do all the same types of things. There are other examples of complex adaptive systems being studied for fundamental similarities. Cultures show signs of adaptation and evolution. The comparison of different cultural evolutions may bear fruit as well as comparisons to biological evolution. Science also is a complex system of human interactions, like culture and economics, that adapts to new information and political pressure, and evolves, usually becoming more organized rather than less. Those who study creative thinking also see parallels with complex systems. Humans sometimes organize almost random pieces of information, often subconsciously while doing other things, and come up with brilliant creative insights. The development of language is another complex adaptive system that may show similar tendencies. Artificial intelligence is an overt attempt to devise an adaptive system that will self-organize and evolve in the same manner as an intelligent living being learns. These are a few of the broad range of topics being studied by those who investigate complexity. There are now institutes, journals, and meetings, as well as popularizations of the emerging topic of complexity. In traditional physics, the discipline of complexity may yield insights in certain areas. Thermodynamics treats systems on the average, while statistical mechanics deals in some detail with complex systems of atoms and molecules in random thermal motion. Yet there is organization, adaptation, and evolution in those complex systems. Non-equilibrium phenomena, such as heat transfer and phase changes, are characteristically complex in detail, and new approaches to them may evolve from complexity as a discipline. Crystal growth is another example of self-organization spontaneously emerging in a complex system. Alloys are also inherently complex mixtures that show certain simple characteristics implying some self-organization. The organization of iron atoms into magnetic domains as they cool is another. Perhaps insights into these difficult areas will emerge from complexity.

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
icon
Concept explainers
Question

 Complexity and Chaos
• Explain complex systems.
• Discuss chaotic behavior of different systems.

34.5 Complexity and Chaos
Much of what impresses us about physics is related to the underlying connections and basic simplicity of the laws we have
discovered. The language of physics is precise and well defined because many basic systems we study are simple enough that
we can perform controlled experiments and discover unambiguous relationships. Our most spectacular successes, such as the
prediction of previously unobserved particles, come from the simple underlying patterns we have been able to recognize. But
there are systems of interest to physicists that are inherently complex. The simple laws of physics apply, of course, but complex
systems may reveal patterns that simple systems do not. The emerging field of complexity is devoted to the study of complex
systems, including those outside the traditional bounds of physics. Of particular interest is the ability of complex systems to adapt
and evolve.
What are some examples of complex adaptive systems? One is the primordial ocean. When the oceans first formed, they were a
random mix of elements and compounds that obeyed the laws of physics and chemistry. In a relatively short geological time
(about 500 million years), life had emerged. Laboratory simulations indicate that the emergence of life was far too fast to have
come from random combinations of compounds, even if driven by lightning and heat. There must be an underlying ability of the
complex system to organize itself, resulting in the self-replication we recognize as life. Living entities, even at the unicellular
level, are highly organized and systematic. Systems of living organisms are themselves complex adaptive systems. The grandest
of these evolved into the biological system we have today, leaving traces in the geological record of steps taken along the way.
Complexity as a discipline examines complex systems, how they adapt and evolve, looking for similarities with other complex
adaptive systems. Can, for example, parallels be drawn between biological evolution and the evolution of economic systems?
Economic systems do emerge quickly, they show tendencies for self-organization, they are complex (in the number and types of
transactions), and they adapt and evolve. Biological systems do all the same types of things. There are other examples of
complex adaptive systems being studied for fundamental similarities. Cultures show signs of adaptation and evolution. The
comparison of different cultural evolutions may bear fruit as well as comparisons to biological evolution. Science also is a
complex system of human interactions, like culture and economics, that adapts to new information and political pressure, and
evolves, usually becoming more organized rather than less. Those who study creative thinking also see parallels with complex
systems. Humans sometimes organize almost random pieces of information, often subconsciously while doing other things, and
come up with brilliant creative insights. The development of language is another complex adaptive system that may show similar
tendencies. Artificial intelligence is an overt attempt to devise an adaptive system that will self-organize and evolve in the same
manner as an intelligent living being learns. These are a few of the broad range of topics being studied by those who investigate
complexity. There are now institutes, journals, and meetings, as well as popularizations of the emerging topic of complexity.
In traditional physics, the discipline of complexity may yield insights in certain areas. Thermodynamics treats systems on the
average, while statistical mechanics deals in some detail with complex systems of atoms and molecules in random thermal
motion. Yet there is organization, adaptation, and evolution in those complex systems. Non-equilibrium phenomena, such as heat
transfer and phase changes, are characteristically complex in detail, and new approaches to them may evolve from complexity
as a discipline. Crystal growth is another example of self-organization spontaneously emerging in a complex system. Alloys are
also inherently complex mixtures that show certain simple characteristics implying some self-organization. The organization of
iron atoms into magnetic domains as they cool is another. Perhaps insights into these difficult areas will emerge from complexity.
Transcribed Image Text:34.5 Complexity and Chaos Much of what impresses us about physics is related to the underlying connections and basic simplicity of the laws we have discovered. The language of physics is precise and well defined because many basic systems we study are simple enough that we can perform controlled experiments and discover unambiguous relationships. Our most spectacular successes, such as the prediction of previously unobserved particles, come from the simple underlying patterns we have been able to recognize. But there are systems of interest to physicists that are inherently complex. The simple laws of physics apply, of course, but complex systems may reveal patterns that simple systems do not. The emerging field of complexity is devoted to the study of complex systems, including those outside the traditional bounds of physics. Of particular interest is the ability of complex systems to adapt and evolve. What are some examples of complex adaptive systems? One is the primordial ocean. When the oceans first formed, they were a random mix of elements and compounds that obeyed the laws of physics and chemistry. In a relatively short geological time (about 500 million years), life had emerged. Laboratory simulations indicate that the emergence of life was far too fast to have come from random combinations of compounds, even if driven by lightning and heat. There must be an underlying ability of the complex system to organize itself, resulting in the self-replication we recognize as life. Living entities, even at the unicellular level, are highly organized and systematic. Systems of living organisms are themselves complex adaptive systems. The grandest of these evolved into the biological system we have today, leaving traces in the geological record of steps taken along the way. Complexity as a discipline examines complex systems, how they adapt and evolve, looking for similarities with other complex adaptive systems. Can, for example, parallels be drawn between biological evolution and the evolution of economic systems? Economic systems do emerge quickly, they show tendencies for self-organization, they are complex (in the number and types of transactions), and they adapt and evolve. Biological systems do all the same types of things. There are other examples of complex adaptive systems being studied for fundamental similarities. Cultures show signs of adaptation and evolution. The comparison of different cultural evolutions may bear fruit as well as comparisons to biological evolution. Science also is a complex system of human interactions, like culture and economics, that adapts to new information and political pressure, and evolves, usually becoming more organized rather than less. Those who study creative thinking also see parallels with complex systems. Humans sometimes organize almost random pieces of information, often subconsciously while doing other things, and come up with brilliant creative insights. The development of language is another complex adaptive system that may show similar tendencies. Artificial intelligence is an overt attempt to devise an adaptive system that will self-organize and evolve in the same manner as an intelligent living being learns. These are a few of the broad range of topics being studied by those who investigate complexity. There are now institutes, journals, and meetings, as well as popularizations of the emerging topic of complexity. In traditional physics, the discipline of complexity may yield insights in certain areas. Thermodynamics treats systems on the average, while statistical mechanics deals in some detail with complex systems of atoms and molecules in random thermal motion. Yet there is organization, adaptation, and evolution in those complex systems. Non-equilibrium phenomena, such as heat transfer and phase changes, are characteristically complex in detail, and new approaches to them may evolve from complexity as a discipline. Crystal growth is another example of self-organization spontaneously emerging in a complex system. Alloys are also inherently complex mixtures that show certain simple characteristics implying some self-organization. The organization of iron atoms into magnetic domains as they cool is another. Perhaps insights into these difficult areas will emerge from complexity.
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Stellar evolution
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON