3.Which model do you think is the “best” reduced model? Discuss why you choose this model. Analysis of Variance Table (Step back model) Response: rent Df Sum Sq Mean Sq F value Pr(>F)
3.Which model do you think is the “best” reduced model? Discuss why you choose this model.
Analysis of Variance Table (Step back model)
Response: rent
Df Sum Sq Mean Sq F value Pr(>F)
age 1 21000 21000 17.1136 0.0003079 ***
sqft 1 35364 35364 28.8196 1.134e-05 ***
sd 1 5961 5961 4.8576 0.0362339 *
unts 1 8678 8678 7.0722 0.0130049 *
gar 1 33364 33364 27.1899 1.713e-05 ***
cp 1 7641 7641 6.2269 0.0189934 *
Residuals 27 33131 1227
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Step forward model:
Response: rent
Df Sum Sq Mean Sq F value Pr(>F)
age 1 21000 21000 16.6255 0.000406 ***
sqft 1 35364 35364 27.9976 1.757e-05 ***
sd 1 5961 5961 4.7191 0.039517 *
unts 1 8678 8678 6.8705 0.014697 *
gar 1 33364 33364 26.4144 2.599e-05 ***
cp 1 7641 7641 6.0493 0.021176 *
ss 1 419 419 0.3316 0.569855
fit 1 1135 1135 0.8983 0.352314
Residuals 25 31578 1263
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Stepwise model:
Response: rent
Df Sum Sq Mean Sq F value Pr(>F)
age 1 21000 21000 17.1136 0.0003079 ***
sqft 1 35364 35364 28.8196 1.134e-05 ***
sd 1 5961 5961 4.8576 0.0362339 *
unts 1 8678 8678 7.0722 0.0130049 *
gar 1 33364 33364 27.1899 1.713e-05 ***
cp 1 7641 7641 6.2269 0.0189934 *
Residuals 27 33131 1227
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Step by step
Solved in 2 steps