3.74 A fixed-fixed steel beam, of length 5 m, width 0.5 m, and thickness 0.1 m, carries an electric motor of mass 75 kg and speed 1200 rpm at its mid-span, as shown in Fig. 3.64. A rotating force of magnitude F = 5000 N is developed due to the unbalance in the rotor of the motor. Find the amplitude of steady-state vibrations by disregarding the mass of the beam. What will be the amplitude if the mass of the beam is considered?
3.74 A fixed-fixed steel beam, of length 5 m, width 0.5 m, and thickness 0.1 m, carries an electric motor of mass 75 kg and speed 1200 rpm at its mid-span, as shown in Fig. 3.64. A rotating force of magnitude F = 5000 N is developed due to the unbalance in the rotor of the motor. Find the amplitude of steady-state vibrations by disregarding the mass of the beam. What will be the amplitude if the mass of the beam is considered?
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
solve using simply supported beam not rigid support
(hint meq and k formulas are on the front cover of the book)
![3.74 A fixed-fixed steel beam, of length 5 m, width 0.5 m, and thickness 0.1 m, carries an electric
motor of mass 75 kg and speed 1200 rpm at its mid-span, as shown in Fig. 3.64. A rotating
force of magnitude Fo= 5000 N is developed due to the unbalance in the rotor of the motor.
Find the amplitude of steady-state vibrations by disregarding the mass of the beam. What will
be the amplitude if the mass of the beam is considered?
cot
Fo
-1-
FIGURE 3.64 Unbalance in the motor supported on a beam.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F3f6c81c7-9a41-4014-8916-60df888d5014%2Fd116e05b-7753-4e10-a882-3ce707ca12b8%2Fwl2rbt7_processed.jpeg&w=3840&q=75)
Transcribed Image Text:3.74 A fixed-fixed steel beam, of length 5 m, width 0.5 m, and thickness 0.1 m, carries an electric
motor of mass 75 kg and speed 1200 rpm at its mid-span, as shown in Fig. 3.64. A rotating
force of magnitude Fo= 5000 N is developed due to the unbalance in the rotor of the motor.
Find the amplitude of steady-state vibrations by disregarding the mass of the beam. What will
be the amplitude if the mass of the beam is considered?
cot
Fo
-1-
FIGURE 3.64 Unbalance in the motor supported on a beam.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY