3.27. Let R be a ring, possibly non commutative, in which xy = 0 implies x = 0 or y = 0. If a, b R and an = bn and am = fm for two relatively prime positive integers m and n, prove that a = b. Solution: (m, n) = 1, implies that, there exists u, k = Z such that mu+nk = 1. Since m, n ≥ 0 either u ≥ 0 or k ≥ 0. Assume that u > 0. Then munk = 1 where k > 0. Hence mu = nk + 1. Now, let

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
3.27. Let R be a ring, possibly non commutative, in which xy 0
implies x = 0 or y = 0. If a,b ≤ R and an = bn and am
a" = fm for two
relatively prime positive integers m and n, prove that a = = b.
Solution: (m, n) = 1, implies that, there exists u, k € Z such that
mu+nk = 1. Since m, n ≥ 0 either u ≥ 0 or k ≥ 0. Assume that u > 0.
Then mu - nk = 1 where k > 0. Hence mu = nk + 1. Now, let
mu
a = (am)u = (fm)u = fmu
ank+1
=amu = a
fnk+1
=
aank = a(an)k = a(bn)k = abnk
=
Hence
bb nk abrk implies that (b − a)bnk = 0. Then either bnk = 0 or
b = a. The first possibility fnk = 0 is impossible if b ‡ 0. One can see
this easily that, if t is the smallest positive integer such that bt-1 0,
but bt = 0, then 0 = b = bt-¹.b 0. This implies that the assumption
bt = 0 is impossible, whenever b 0. Hence b
=
Request explain the
highlighted portion
If u or k >=0, and
we assume u>0,
how do we say then
k>0??
Transcribed Image Text:3.27. Let R be a ring, possibly non commutative, in which xy 0 implies x = 0 or y = 0. If a,b ≤ R and an = bn and am a" = fm for two relatively prime positive integers m and n, prove that a = = b. Solution: (m, n) = 1, implies that, there exists u, k € Z such that mu+nk = 1. Since m, n ≥ 0 either u ≥ 0 or k ≥ 0. Assume that u > 0. Then mu - nk = 1 where k > 0. Hence mu = nk + 1. Now, let mu a = (am)u = (fm)u = fmu ank+1 =amu = a fnk+1 = aank = a(an)k = a(bn)k = abnk = Hence bb nk abrk implies that (b − a)bnk = 0. Then either bnk = 0 or b = a. The first possibility fnk = 0 is impossible if b ‡ 0. One can see this easily that, if t is the smallest positive integer such that bt-1 0, but bt = 0, then 0 = b = bt-¹.b 0. This implies that the assumption bt = 0 is impossible, whenever b 0. Hence b = Request explain the highlighted portion If u or k >=0, and we assume u>0, how do we say then k>0??
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,