1) Let R and S be rings. Show that the cartesian product of sets Rx S = {(r,s) |r € R, s E s} with the addition (r, 8) + (r', s') := (r + r', s + s') and the multiplication (r, s) · (r', s') := (r · r', s · s') is a ring.
1) Let R and S be rings. Show that the cartesian product of sets Rx S = {(r,s) |r € R, s E s} with the addition (r, 8) + (r', s') := (r + r', s + s') and the multiplication (r, s) · (r', s') := (r · r', s · s') is a ring.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![1) Let R and S be rings. Show that the cartesian product of sets
R x S = {(r, ) |r e R, s €s}
with the addition
(r, s) + (r', s') := (r +r', s + s')
and the multiplication
(r, s) · (r', s') := (r - r', s - s')
is a ring.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fe1bbb03a-1330-4abd-86a4-84230eb34f64%2Fddb9cadd-6469-4789-a031-668d206245d4%2Fc8ewn629_processed.png&w=3840&q=75)
Transcribed Image Text:1) Let R and S be rings. Show that the cartesian product of sets
R x S = {(r, ) |r e R, s €s}
with the addition
(r, s) + (r', s') := (r +r', s + s')
and the multiplication
(r, s) · (r', s') := (r - r', s - s')
is a ring.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step by step
Solved in 10 steps with 10 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)