3. Using the graph of the function below, determine the following. If infinite, specify oo or – oo. If an answer does not exist or cannot be determined, explain why. بایز d. lim x+2 dx d x+1 dx | 3f(x) + 2 e. lim. : [f(3 – x)] f. lim d - [f(x)] x→∞0 dx

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Hi, I need help with this one. Please only use the formulas provided, and please write it so that I can read it! Thank you so much for your help!

3. Using the graph of the function below, determine the following. If infinite, specify ∞o or-oo. If an answer does not exist
or cannot be determined, explain why.
بایز
d. lim
x-2 dx
d
e. lim.
x-1 dx3f(x) + 2
f. lim
d
[ƒ(3-x)]
- [ƒ(x)]
x→∞0 dx
Transcribed Image Text:3. Using the graph of the function below, determine the following. If infinite, specify ∞o or-oo. If an answer does not exist or cannot be determined, explain why. بایز d. lim x-2 dx d e. lim. x-1 dx3f(x) + 2 f. lim d [ƒ(3-x)] - [ƒ(x)] x→∞0 dx
MULTIPLE DERIVATIVES
A function fis-times differentiable (or fE C") if you can apply
the derivative times to fand have a continuous function after
each application of the derivative.
A function fis smooth (orf E C) if it can be differentiated
infinitely many times, and each derivative is a continuous
function
Linearity:
Products:
Quotients:
Compositions:
DERIVATIVE PROPERTIES
d
[f(x) + a· g(x)] = f(x) + a · g(x)
dx
d
dx
[ƒ(x)g (x)] = f(x)g (x) + f(x)g'(x)
d f(x)
dx [g(x)]
d
dx
f(x)g(x) = f(x)g'(x)
(g(x)) ²
where g(x) = 0
[ƒ (g(x))] = f(g(x)) · g'(x)
TANGENT AND NORMAL LINES
If y=f(x) describes some differentiable function, the equation of
the tangent line at a point
is given by
y = f(x)(x − a) + f(a).
The equation of the normal line at a point
(x-a) + f(a).
If fis differentiable near
f (a)
is given by
LINEAR APPROXIMATION
then for values close to,
f(x) = f(a)(x-a) + f(a).
Constant:
Power:
Exponential:
Logarithmic:
BASIC FUNCTION DERIVATIVES
Trigonometric:
Hyperbolic:
d
dx
d
dx
d
dx
d
dx
d
dx
d
d
[b] = ln(b) b*, where b € (0,0)
dx
d
dx
[a] = 0, where a
d
dx
M
dx
d
dx
d
dx
Inverse Trigonometric:
d
dx
d
dx
d
dx
=x²-¹, where
[log(x)] =
[sin(x)] = cos(x)
[cos(x)]=sin(x)
[tan(x)] = sec²(x)
[sec(x)] = sec(x)tan(x)
[cot(x)]=-csc²(x)
[csc(x)]=csc(x)cot(x)
[arcsin(x)]
[arccos(x)]
In(b) x
[arctan(x)]
1+x²
where b, x € (0,00)
[sinh(x)] = cosh(x)
[cosh(x)] = sinh(x)
where x = ±
where x ±
C
ZOOM +
Transcribed Image Text:MULTIPLE DERIVATIVES A function fis-times differentiable (or fE C") if you can apply the derivative times to fand have a continuous function after each application of the derivative. A function fis smooth (orf E C) if it can be differentiated infinitely many times, and each derivative is a continuous function Linearity: Products: Quotients: Compositions: DERIVATIVE PROPERTIES d [f(x) + a· g(x)] = f(x) + a · g(x) dx d dx [ƒ(x)g (x)] = f(x)g (x) + f(x)g'(x) d f(x) dx [g(x)] d dx f(x)g(x) = f(x)g'(x) (g(x)) ² where g(x) = 0 [ƒ (g(x))] = f(g(x)) · g'(x) TANGENT AND NORMAL LINES If y=f(x) describes some differentiable function, the equation of the tangent line at a point is given by y = f(x)(x − a) + f(a). The equation of the normal line at a point (x-a) + f(a). If fis differentiable near f (a) is given by LINEAR APPROXIMATION then for values close to, f(x) = f(a)(x-a) + f(a). Constant: Power: Exponential: Logarithmic: BASIC FUNCTION DERIVATIVES Trigonometric: Hyperbolic: d dx d dx d dx d dx d dx d d [b] = ln(b) b*, where b € (0,0) dx d dx [a] = 0, where a d dx M dx d dx d dx Inverse Trigonometric: d dx d dx d dx =x²-¹, where [log(x)] = [sin(x)] = cos(x) [cos(x)]=sin(x) [tan(x)] = sec²(x) [sec(x)] = sec(x)tan(x) [cot(x)]=-csc²(x) [csc(x)]=csc(x)cot(x) [arcsin(x)] [arccos(x)] In(b) x [arctan(x)] 1+x² where b, x € (0,00) [sinh(x)] = cosh(x) [cosh(x)] = sinh(x) where x = ± where x ± C ZOOM +
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,