3. Two masses, 4.0 kg and 6.0 kg, are connected by a “massless" rope over a “frictionless" pulley as pictured in the diagram. The ramp is inclined at 30.0° and the coefficient of kinetic friction on the ramp is 0.18. 4.0 kg HK =0.18 6.0 kg 300 a. If the rope breaks when the 4.0-kg mass is 3.0 m from the bottom of the ramp, how long will it take for the mass to slide all the way down? Include a new free-body diagram and assume the sliding mass starts from rest. Use the grasp method to determine the answer

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
Drive .ll ?
6:41 AM
93%
Page break
3. Two masses, 4.0 kg and 6.0 kg, are connected
by a “massless" rope over a “frictionless" pulley
as pictured in the diagram. The ramp is inclined
at 30.0° and the coefficient of kinetic friction on
the ramp is 0.18.
4.0 kg
HK = 0.18
6.0 kg
300
a. If the rope breaks when the 4.0-kg mass
is 3.0 m from the bottom of the ramp,
how long will it take for the mass to slide
all the way down? Include a new
free-body diagram and assume the
sliding mass starts from rest.
Use the grasp method to
determine the answer
Transcribed Image Text:Drive .ll ? 6:41 AM 93% Page break 3. Two masses, 4.0 kg and 6.0 kg, are connected by a “massless" rope over a “frictionless" pulley as pictured in the diagram. The ramp is inclined at 30.0° and the coefficient of kinetic friction on the ramp is 0.18. 4.0 kg HK = 0.18 6.0 kg 300 a. If the rope breaks when the 4.0-kg mass is 3.0 m from the bottom of the ramp, how long will it take for the mass to slide all the way down? Include a new free-body diagram and assume the sliding mass starts from rest. Use the grasp method to determine the answer
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON