3. The rectilinear motion of a particle is governed by the equation a = 6t – 4 where a is in m/s^2 and t is in seconds. When t=0, the acceleration of the particle is 4 m/s^2 to the left. During the interval from t=2 to t=4s, the displacement of the particle is 20 m to the right. Determine: a. The initial velocity of the particle b. The velocity of the particle at the end of the displacement period c. The position of the particle when t-35
3. The rectilinear motion of a particle is governed by the equation a = 6t – 4 where a is in m/s^2 and t is in seconds. When t=0, the acceleration of the particle is 4 m/s^2 to the left. During the interval from t=2 to t=4s, the displacement of the particle is 20 m to the right. Determine: a. The initial velocity of the particle b. The velocity of the particle at the end of the displacement period c. The position of the particle when t-35
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
! COMPLETE SOLUTION !
pls answer NO. 3
*draw FBD
*use data given below properly
![1. A particle moves along a straight line so that after t seconds its displacement s in meters from a
fixed reference point O on the line is given by: s =- 4 + 302 – 48t + 12. The particle is
4m to the left of the origin at t= 25. Determine
a. The acceleration of the particle when t=35
b. The displacement during the interval from t=2s to t=5s
c. The total distance traveled during the interval from t=2s to t=5s
d. The average velocity during the interval from t=2s to t=55
2. The resistance to motion of a particle in air is approximately proportional to the square of its
velocity v for speeds not exceeding 150 m/s. Thus, the deceleration is given by the expression
a =- ku', where k is taken to be a constant whose numerical value depends on the prevailing
air conditions and the shape, roughness, and mass. If a particle which moves in a horizontal
straight line is fired with an initial velocity of 50 m/s for a condition where k-1/100m*, in what
distance and elapsed time after firing will the velocity be reduced to 8m/s?
3. The rectilinear motion of a particle is governed by the equation a = 6t – 4 where a is in m/s^2
and t is in seconds. When t-0, the acceleration of the particle is 4 m/s^2 to the left. During the
interval from t=2 to t=45, the displacement of the particle is 20 m to the right. Determine:
a. The initial velocity of the particle
b. The velocity of the particle at the end of the displacement period
c. The position of the particle when t=3s
4. An average car can decelerate at the maximum rate of 8m/s^2 on the highway. Find the total
emergency stopping distance measured from the point where the driver first sights the danger
for a car traveling at a speed of 108km/hr. The reaction time for a good driver is about % of a
second from the instant he sights the danger until he actually applies the brakes.
5. A stone is dropped from a balloon which rises vertically at a constant rate for 4 seconds from the
ground. The stone reaches the ground in 10 seconds. Find the velocity and height of the balloon
when the stone is dropped.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F4d958234-6888-432d-97d8-e763bad29f71%2F09a416b5-ef35-416f-95a0-cc79943a1559%2F95r94vn_processed.png&w=3840&q=75)
Transcribed Image Text:1. A particle moves along a straight line so that after t seconds its displacement s in meters from a
fixed reference point O on the line is given by: s =- 4 + 302 – 48t + 12. The particle is
4m to the left of the origin at t= 25. Determine
a. The acceleration of the particle when t=35
b. The displacement during the interval from t=2s to t=5s
c. The total distance traveled during the interval from t=2s to t=5s
d. The average velocity during the interval from t=2s to t=55
2. The resistance to motion of a particle in air is approximately proportional to the square of its
velocity v for speeds not exceeding 150 m/s. Thus, the deceleration is given by the expression
a =- ku', where k is taken to be a constant whose numerical value depends on the prevailing
air conditions and the shape, roughness, and mass. If a particle which moves in a horizontal
straight line is fired with an initial velocity of 50 m/s for a condition where k-1/100m*, in what
distance and elapsed time after firing will the velocity be reduced to 8m/s?
3. The rectilinear motion of a particle is governed by the equation a = 6t – 4 where a is in m/s^2
and t is in seconds. When t-0, the acceleration of the particle is 4 m/s^2 to the left. During the
interval from t=2 to t=45, the displacement of the particle is 20 m to the right. Determine:
a. The initial velocity of the particle
b. The velocity of the particle at the end of the displacement period
c. The position of the particle when t=3s
4. An average car can decelerate at the maximum rate of 8m/s^2 on the highway. Find the total
emergency stopping distance measured from the point where the driver first sights the danger
for a car traveling at a speed of 108km/hr. The reaction time for a good driver is about % of a
second from the instant he sights the danger until he actually applies the brakes.
5. A stone is dropped from a balloon which rises vertically at a constant rate for 4 seconds from the
ground. The stone reaches the ground in 10 seconds. Find the velocity and height of the balloon
when the stone is dropped.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 5 steps with 5 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY