3. Suppose that we want to know which agents are connected by a walk of length two in a given network. That is, want to know the set of ordered pairs (i, j) such that there exists a walk of length 2 between any i and j. Define n as the number of nodes and m as the number of links. (a) One way to do this is to input the adjacency matrix A, calculate A2, then output all pairs (i, j) for which A(i) > 0. Defining scalar multiplication and addition as "basic operations," up to a constant c, how many "basic operations" are required to calculate A², in terms of n and m? (Hint: First think about how many operations are required to calculate each entry of A2, then multiply by the number of entries.) (b) Suppose that we want to know the number of agents who are connected by a walk of length k in a given network, where k 21. Up to a constant, how many basic operations are required to calculate Ak, in terms of n and m? (c) (Harder) We showed in class (Lecture 4) that a simple adaptation of Breadth-First Search (BFS) will calculate the length of the shortest path from any starting node i to all other nodes j in O(m) time. Taking this result as given, suggest an algorithm that runs in O(nm) time that will output all pairs (i, j) such that there is a path of length 2 between them, and briefly discuss why it runs in O(nm) time.
3. Suppose that we want to know which agents are connected by a walk of length two in a given network. That is, want to know the set of ordered pairs (i, j) such that there exists a walk of length 2 between any i and j. Define n as the number of nodes and m as the number of links. (a) One way to do this is to input the adjacency matrix A, calculate A2, then output all pairs (i, j) for which A(i) > 0. Defining scalar multiplication and addition as "basic operations," up to a constant c, how many "basic operations" are required to calculate A², in terms of n and m? (Hint: First think about how many operations are required to calculate each entry of A2, then multiply by the number of entries.) (b) Suppose that we want to know the number of agents who are connected by a walk of length k in a given network, where k 21. Up to a constant, how many basic operations are required to calculate Ak, in terms of n and m? (c) (Harder) We showed in class (Lecture 4) that a simple adaptation of Breadth-First Search (BFS) will calculate the length of the shortest path from any starting node i to all other nodes j in O(m) time. Taking this result as given, suggest an algorithm that runs in O(nm) time that will output all pairs (i, j) such that there is a path of length 2 between them, and briefly discuss why it runs in O(nm) time.
Computer Networking: A Top-Down Approach (7th Edition)
7th Edition
ISBN:9780133594140
Author:James Kurose, Keith Ross
Publisher:James Kurose, Keith Ross
Chapter1: Computer Networks And The Internet
Section: Chapter Questions
Problem R1RQ: What is the difference between a host and an end system? List several different types of end...
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps
Recommended textbooks for you
Computer Networking: A Top-Down Approach (7th Edi…
Computer Engineering
ISBN:
9780133594140
Author:
James Kurose, Keith Ross
Publisher:
PEARSON
Computer Organization and Design MIPS Edition, Fi…
Computer Engineering
ISBN:
9780124077263
Author:
David A. Patterson, John L. Hennessy
Publisher:
Elsevier Science
Network+ Guide to Networks (MindTap Course List)
Computer Engineering
ISBN:
9781337569330
Author:
Jill West, Tamara Dean, Jean Andrews
Publisher:
Cengage Learning
Computer Networking: A Top-Down Approach (7th Edi…
Computer Engineering
ISBN:
9780133594140
Author:
James Kurose, Keith Ross
Publisher:
PEARSON
Computer Organization and Design MIPS Edition, Fi…
Computer Engineering
ISBN:
9780124077263
Author:
David A. Patterson, John L. Hennessy
Publisher:
Elsevier Science
Network+ Guide to Networks (MindTap Course List)
Computer Engineering
ISBN:
9781337569330
Author:
Jill West, Tamara Dean, Jean Andrews
Publisher:
Cengage Learning
Concepts of Database Management
Computer Engineering
ISBN:
9781337093422
Author:
Joy L. Starks, Philip J. Pratt, Mary Z. Last
Publisher:
Cengage Learning
Prelude to Programming
Computer Engineering
ISBN:
9780133750423
Author:
VENIT, Stewart
Publisher:
Pearson Education
Sc Business Data Communications and Networking, T…
Computer Engineering
ISBN:
9781119368830
Author:
FITZGERALD
Publisher:
WILEY