3. Show that if (F, P) is an ordered field and a € F is such that a > 0, so is a-¹.

Elementary Geometry For College Students, 7e
7th Edition
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Alexander, Daniel C.; Koeberlein, Geralyn M.
ChapterP: Preliminary Concepts
SectionP.CT: Test
Problem 1CT
icon
Related questions
Question

[Classical Geometry] How do you solve #3? The second picture is a hint (you don't need to solve the bullet points in the hint, just the asked question in the list of seven)

1. Construct √an – bn using the ruler and compass, where a > b> 0 in an ordered field F
(assuming you have two points (0, 0) and (1,0), as always.)
2. Show that Q√3 = {a +b√3|a, b € Q} is a field by verifying the field axioms one by one.
3. Show that if (F, P) is an ordered field and a € F is such that a > 0, so is a ¹.
4. Let II be an ordered field.
(a). Explain what does 3 mean in F.
(b). Give an example of ordered field F where 3 does not have a square root in F
(c). Show that there is an equilateral triangle in II if and only if √3 € F.
5. Show the congruence axiom C3 for IIF (don't assume the field is Pythagorean)
6. Can we discuss incidence in IIF31? Can we discuss betweenness in IIF3₁1? Explain your
answer.
7. Consider the vector space F³ = {(x, y, z)|x, y, z € F}, where F is field.
(a). let ~ be a relation on F³ \ {0, 0, 0}, defined by
a = (x1, y₁, 21) ~ B = (x2, Y2, 22)
if there exists some > € K s.t. Aa= B. Show that A is an equivalence relation.
(b). Describe the equivalent classes [a] in F3.
(c). The projective plane over F, denoted by FP2 is the set of equivalent classes [a]. We
interpret the primitive term as
• point: [a], a € F³.
● line: {[a] a = (x, y, z), ax + by + cz = 0} for some fixed a, b, c = F.
(d). show that the line is well defined: if ax+by+cz = 0 holds for some a = = (x, y, z),
then it holds for any B = (x1, 9₁, 2₁) s.t. B € [a].
(e). How many points are there in F₂P²? List them.
(f). How many lines are there in F₂P2? List them.
(g). Show that F₂P2 is isomorphic to the Fano plane.
Transcribed Image Text:1. Construct √an – bn using the ruler and compass, where a > b> 0 in an ordered field F (assuming you have two points (0, 0) and (1,0), as always.) 2. Show that Q√3 = {a +b√3|a, b € Q} is a field by verifying the field axioms one by one. 3. Show that if (F, P) is an ordered field and a € F is such that a > 0, so is a ¹. 4. Let II be an ordered field. (a). Explain what does 3 mean in F. (b). Give an example of ordered field F where 3 does not have a square root in F (c). Show that there is an equilateral triangle in II if and only if √3 € F. 5. Show the congruence axiom C3 for IIF (don't assume the field is Pythagorean) 6. Can we discuss incidence in IIF31? Can we discuss betweenness in IIF3₁1? Explain your answer. 7. Consider the vector space F³ = {(x, y, z)|x, y, z € F}, where F is field. (a). let ~ be a relation on F³ \ {0, 0, 0}, defined by a = (x1, y₁, 21) ~ B = (x2, Y2, 22) if there exists some > € K s.t. Aa= B. Show that A is an equivalence relation. (b). Describe the equivalent classes [a] in F3. (c). The projective plane over F, denoted by FP2 is the set of equivalent classes [a]. We interpret the primitive term as • point: [a], a € F³. ● line: {[a] a = (x, y, z), ax + by + cz = 0} for some fixed a, b, c = F. (d). show that the line is well defined: if ax+by+cz = 0 holds for some a = = (x, y, z), then it holds for any B = (x1, 9₁, 2₁) s.t. B € [a]. (e). How many points are there in F₂P²? List them. (f). How many lines are there in F₂P2? List them. (g). Show that F₂P2 is isomorphic to the Fano plane.
Q3. To figure out this question, you simply follow the definition.
• What do we mean exactly by saying that a > 0?
What do we mean exactly by saying that a-¹ > 0?
The remaining thing is just an easy application of the axioms of ordered fields.
Transcribed Image Text:Q3. To figure out this question, you simply follow the definition. • What do we mean exactly by saying that a > 0? What do we mean exactly by saying that a-¹ > 0? The remaining thing is just an easy application of the axioms of ordered fields.
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Elementary Geometry For College Students, 7e
Elementary Geometry For College Students, 7e
Geometry
ISBN:
9781337614085
Author:
Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:
Cengage,
Elementary Geometry for College Students
Elementary Geometry for College Students
Geometry
ISBN:
9781285195698
Author:
Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:
Cengage Learning