3. Let L be the collection of all lines in the plane. Define a relation on L by saying that two lines are equivalent if and only if they are parallel or equal. Show that this is an equivalence relation on L. 4. Define a relation on C by

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

I know that in order to show an equivalence relation I need to check for (1) reflexivity, (2) Symmetry, and (3) transitivity. I just cant figure out how to prove those things for this problem. (Problem attached.)

20
1. Proofs, Sets, and Functions
3. Let L be the collection of all lines in the plane. Define a relation on L by saying
that two lines are equivalent if and only if they are parallel or equal. Show that this
is an equivalence relation on L.
4. Define a relation on C by
Transcribed Image Text:20 1. Proofs, Sets, and Functions 3. Let L be the collection of all lines in the plane. Define a relation on L by saying that two lines are equivalent if and only if they are parallel or equal. Show that this is an equivalence relation on L. 4. Define a relation on C by
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,