3. Let K(r, y) = xy(x+ y), 0 < x,y <1 and consider the following operator K K f(y) = | K(y, 1)f(r)dx. %3D a) Is this operator bounded as an operator acting from L'(0, 1) into itself? b) Is K bounded as an operator acting from L (0, 1) into L'(0, 1)? c) Is K bounded as an operator acting on L²(0, 1)?

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
3
8.
Problems for boundede operators
1. Let A: (2 → l² be given by
3
n+1
A(x1,., xn, ...) =
In..
2,....
n+ 2
a) Find the norm of A.
b) Find the adjoint A'.
c) Find the norm of A'.
2. Let A : L (0, 1) → L²(0, 1) be given by
(Af)(z) =
(r+t)f(t)dt.
Find the adjoint A'.
3. Let K(x, y) = xy(x+ y), 0 < x, y < 1 and consider the following
operator K
K f(y) = | K(y, x)f(x)dx.
a) Is this operator bounded as an operator acting from L'(0, 1) into
itself?
b) Is K bounded as an operator acting from L(0, 1) into L'(0, 1)?
c) Is K bounded as an operator acting on L²(0, 1)?
4. Consider the operator A: L²(0, 1) → L²(0, 1) from problem 2.
a) Is this operator bounded? If "yes", find it's norm.
b) Is the open mapping theorem applicable to this operator? Why?
Transcribed Image Text:8. Problems for boundede operators 1. Let A: (2 → l² be given by 3 n+1 A(x1,., xn, ...) = In.. 2,.... n+ 2 a) Find the norm of A. b) Find the adjoint A'. c) Find the norm of A'. 2. Let A : L (0, 1) → L²(0, 1) be given by (Af)(z) = (r+t)f(t)dt. Find the adjoint A'. 3. Let K(x, y) = xy(x+ y), 0 < x, y < 1 and consider the following operator K K f(y) = | K(y, x)f(x)dx. a) Is this operator bounded as an operator acting from L'(0, 1) into itself? b) Is K bounded as an operator acting from L(0, 1) into L'(0, 1)? c) Is K bounded as an operator acting on L²(0, 1)? 4. Consider the operator A: L²(0, 1) → L²(0, 1) from problem 2. a) Is this operator bounded? If "yes", find it's norm. b) Is the open mapping theorem applicable to this operator? Why?
Expert Solution
steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,