3. Let i, j, k denote the unit vectors along the three coordinate axes. Let v(t) = ti + sintj + costk and w(t) = 3ti + 2k. (a) Compute (v.w)'(t) directly and check your answer by using the product rule (for the dot product, stated in the class). Note that the dot above, is the dot product of vectors and' denotes the derivative. (b) Compute (vx w)'(t) directly and check your answer by using the product rule (for the cross product, again stated in the class). Note that the x above, is the cross product of vectors.
3. Let i, j, k denote the unit vectors along the three coordinate axes. Let v(t) = ti + sintj + costk and w(t) = 3ti + 2k. (a) Compute (v.w)'(t) directly and check your answer by using the product rule (for the dot product, stated in the class). Note that the dot above, is the dot product of vectors and' denotes the derivative. (b) Compute (vx w)'(t) directly and check your answer by using the product rule (for the cross product, again stated in the class). Note that the x above, is the cross product of vectors.
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![3. Let i, j, k denote the unit vectors along the three coordinate axes. Let
v(t) = ti+ sintj + costk and w(t) = 3ti + 2k.
(a) Compute (v.w)' (t) directly and check your answer by using the
product rule (for the dot product, stated in the class). Note that the
dot above, is the dot product of vectors and denotes the derivative.
(b) Compute (v x w)'(t) directly and check your answer by using the
product rule (for the cross product, again stated in the class). Note
that the x above, is the cross product of vectors.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fac744b86-fb77-4dc8-9b17-1f74c21e67b7%2Febc6e5a8-092d-46a7-928c-d5cb615170da%2Ff9nzok6_processed.png&w=3840&q=75)
Transcribed Image Text:3. Let i, j, k denote the unit vectors along the three coordinate axes. Let
v(t) = ti+ sintj + costk and w(t) = 3ti + 2k.
(a) Compute (v.w)' (t) directly and check your answer by using the
product rule (for the dot product, stated in the class). Note that the
dot above, is the dot product of vectors and denotes the derivative.
(b) Compute (v x w)'(t) directly and check your answer by using the
product rule (for the cross product, again stated in the class). Note
that the x above, is the cross product of vectors.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 5 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question
can you show how do you calculate for these two parts?
![=(i + (cos t)j + (− sin t)k) × ((3t)i + 2k) + ((t)i + (sin t)j + (cos t)) × (3i + 0k)
i
j
ki
j
k
cos tsin t+t
sin t
1
3t 0
2
3 0 0
=(2 cos t)i + (−2 − 3t sin t)j + (−3t cos t)k + 0i+ (3 cos t)j + (−3 sin t)k
cos t](https://content.bartleby.com/qna-images/question/ac744b86-fb77-4dc8-9b17-1f74c21e67b7/a24673fb-f749-425a-9109-1e3615d32d04/su9zvoj_thumbnail.png)
Transcribed Image Text:=(i + (cos t)j + (− sin t)k) × ((3t)i + 2k) + ((t)i + (sin t)j + (cos t)) × (3i + 0k)
i
j
ki
j
k
cos tsin t+t
sin t
1
3t 0
2
3 0 0
=(2 cos t)i + (−2 − 3t sin t)j + (−3t cos t)k + 0i+ (3 cos t)j + (−3 sin t)k
cos t
![Since,
v (t) x w (t)=((t)i
+ (sin t)j + (cos t)k) x ((3t)i + 2k)
k
i
t
cos t
3t 0
2
=(2 sin t)i + (3t cos t − 2t)j + (−3t sin t)k
j
sint](https://content.bartleby.com/qna-images/question/ac744b86-fb77-4dc8-9b17-1f74c21e67b7/a24673fb-f749-425a-9109-1e3615d32d04/g3r3u4_thumbnail.png)
Transcribed Image Text:Since,
v (t) x w (t)=((t)i
+ (sin t)j + (cos t)k) x ((3t)i + 2k)
k
i
t
cos t
3t 0
2
=(2 sin t)i + (3t cos t − 2t)j + (−3t sin t)k
j
sint
Solution
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning