3. Let f: R2 → R2 where f(x, y) = (x²y, 3x + 2y), c = (1,1), and u = (1, 1). Use the e-d definition to prove Lu=? (you need to find Lu in your scratchwork).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Real Analysis II Please find related sample as guide to solve above problem
**Problem Statement:**

3. Let \( f : \mathbb{R}^2 \to \mathbb{R}^2 \) where \( f(x, y) = (x^2y, 3x + 2y) \), \( c = (1, 1) \), and \( u = (1, 1) \). Use the \(\epsilon\)-\(\delta\) definition to prove \( L_u = ? \) (you need to find \( L_u \) in your scratchwork).
Transcribed Image Text:**Problem Statement:** 3. Let \( f : \mathbb{R}^2 \to \mathbb{R}^2 \) where \( f(x, y) = (x^2y, 3x + 2y) \), \( c = (1, 1) \), and \( u = (1, 1) \). Use the \(\epsilon\)-\(\delta\) definition to prove \( L_u = ? \) (you need to find \( L_u \) in your scratchwork).
**Example:**

Let \( f: \mathbb{R}^2 \to \mathbb{R}^2 \), where \( f(x, y) = \begin{pmatrix} x^2 y \\ 3x + 2y \end{pmatrix} \). Consider \( u = (1, 0) \) and \( c = (1, 1) \).

**Claim:** \( Lu = (2, 3) \)

**Proof:**

Fix \(\varepsilon > 0\). Choose \(\delta = \frac{\varepsilon}{2}\). Assume \(0 < |t| < \delta\). Then:

\[ 
\left\| \frac{1}{t} \left[ f(c + tu) - f(c) \right] - Lu \right\| 
\]

\[ 
= \left\| \frac{1}{t} \begin{pmatrix} f(1+t, 1) \\ (1.5) \end{pmatrix} - (2, 3) \right\| 
\]

\[ 
= \left\| \frac{1}{t} \begin{pmatrix} (1 + t)^2 \\ 3(1 + t) + 2 \end{pmatrix} - \begin{pmatrix} 1.5 \end{pmatrix} \right\| - \begin{pmatrix} 2, 3 \end{pmatrix} \right\| 
\]

\[ 
= \left\| \frac{1}{t} \begin{pmatrix} (1 + 2t + t^2) \\ 3t + 5 \end{pmatrix} - \begin{pmatrix} 1.5 \end{pmatrix} - \begin{pmatrix} 2, 3 \end{pmatrix} \right\| 
\]

\[ 
= \left\| \frac{1}{t} \begin{pmatrix} 2t + t^2 \\ 3t \end{pmatrix} - \begin{pmatrix} 2, 3 \end{pmatrix} \right\| 
\]

\[ 
= \left\| \begin{pmatrix} t, 0 \end{pmatrix} \right\| = |t
Transcribed Image Text:**Example:** Let \( f: \mathbb{R}^2 \to \mathbb{R}^2 \), where \( f(x, y) = \begin{pmatrix} x^2 y \\ 3x + 2y \end{pmatrix} \). Consider \( u = (1, 0) \) and \( c = (1, 1) \). **Claim:** \( Lu = (2, 3) \) **Proof:** Fix \(\varepsilon > 0\). Choose \(\delta = \frac{\varepsilon}{2}\). Assume \(0 < |t| < \delta\). Then: \[ \left\| \frac{1}{t} \left[ f(c + tu) - f(c) \right] - Lu \right\| \] \[ = \left\| \frac{1}{t} \begin{pmatrix} f(1+t, 1) \\ (1.5) \end{pmatrix} - (2, 3) \right\| \] \[ = \left\| \frac{1}{t} \begin{pmatrix} (1 + t)^2 \\ 3(1 + t) + 2 \end{pmatrix} - \begin{pmatrix} 1.5 \end{pmatrix} \right\| - \begin{pmatrix} 2, 3 \end{pmatrix} \right\| \] \[ = \left\| \frac{1}{t} \begin{pmatrix} (1 + 2t + t^2) \\ 3t + 5 \end{pmatrix} - \begin{pmatrix} 1.5 \end{pmatrix} - \begin{pmatrix} 2, 3 \end{pmatrix} \right\| \] \[ = \left\| \frac{1}{t} \begin{pmatrix} 2t + t^2 \\ 3t \end{pmatrix} - \begin{pmatrix} 2, 3 \end{pmatrix} \right\| \] \[ = \left\| \begin{pmatrix} t, 0 \end{pmatrix} \right\| = |t
Expert Solution
Step 1

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,