3. If AA'GAA' = AA' and A'AHA'A = A'A, then A'GAHA' is the Penrose inverse of A. Use this principle to find the Penrose inverse of A = 0 1 1 011 1 1 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

This covers the topic of finding the penrose inverse of a given matrix, specifically in the linear models course. Attached is the given problem, and also attached is my attempt at the problem. My professor marked my answer wrong, but I do not see why I got it wrong, I thought my approach was correct.

**Problem 3**

If \( AA'GAA' = AA' \) and \( A'AH'A'A = A'A \), then \( A'GAHA' \) is the Penrose inverse of \( A \). Use this principle to find the Penrose inverse of 

\[
A = \begin{pmatrix} 
0 & 1 & 1 \\ 
0 & 1 & 1 \\ 
1 & 1 & 0 
\end{pmatrix}.
\]

**Explanation:**

This problem involves finding the Penrose (or Moore-Penrose) inverse of a matrix using a given principle. Here, a matrix \( A \) is provided, and you are tasked to apply the given identities to obtain its Penrose inverse. The provided matrix is a \( 3 \times 3 \) matrix, containing both zero and one entries. 

To solve this problem, you need to check and verify if the given conditions are satisfied for a candidate matrix \( G \) related to \( A \), then determine and compute \( A'GAHA' \) to find the Penrose inverse.
Transcribed Image Text:**Problem 3** If \( AA'GAA' = AA' \) and \( A'AH'A'A = A'A \), then \( A'GAHA' \) is the Penrose inverse of \( A \). Use this principle to find the Penrose inverse of \[ A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}. \] **Explanation:** This problem involves finding the Penrose (or Moore-Penrose) inverse of a matrix using a given principle. Here, a matrix \( A \) is provided, and you are tasked to apply the given identities to obtain its Penrose inverse. The provided matrix is a \( 3 \times 3 \) matrix, containing both zero and one entries. To solve this problem, you need to check and verify if the given conditions are satisfied for a candidate matrix \( G \) related to \( A \), then determine and compute \( A'GAHA' \) to find the Penrose inverse.
Certainly! Below is the transcription suitable for an educational website:

---

### Gaussian Reduction Method

#### Initial Matrices

\( A = \begin{pmatrix} 0 & 2 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix} \)

\( A^{-1} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix} \)

#### Calculation Steps

1. **Equation Formation:**  
   \( S = A \cdot A^{-1} - I = \begin{pmatrix} 0 & 2 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \)
   
2. **Vector Conversion:**  
   \( \begin{pmatrix} 2 & 1 \end{pmatrix} - 1 \cdot \begin{pmatrix} 2 \cdot \dfrac{1}{3} \\ \dfrac{1}{3} \end{pmatrix} = \begin{pmatrix} -213 & -313 \\ -13 & 213 \end{pmatrix} \)

#### Intermediate Matrices

\[ 
\begin{pmatrix} -219 & 219 & 219 \\ 113 & 113 & 113 \end{pmatrix}
\xrightarrow{} 
\text{Final Answer!}
\]

#### Final Calculation:

\[
\begin{pmatrix} -219 & 219 & 219 \\ 113 & 113 & 113 \end{pmatrix}
\]

**Note:** The final matrix encapsulated in a box is the result of the transformations applied during the Gaussian reduction. 

---

The exercise demonstrates problem-solving steps utilizing matrix operations, specifically geared for linear algebra methodology in solving systems of equations.
Transcribed Image Text:Certainly! Below is the transcription suitable for an educational website: --- ### Gaussian Reduction Method #### Initial Matrices \( A = \begin{pmatrix} 0 & 2 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix} \) \( A^{-1} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix} \) #### Calculation Steps 1. **Equation Formation:** \( S = A \cdot A^{-1} - I = \begin{pmatrix} 0 & 2 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \) 2. **Vector Conversion:** \( \begin{pmatrix} 2 & 1 \end{pmatrix} - 1 \cdot \begin{pmatrix} 2 \cdot \dfrac{1}{3} \\ \dfrac{1}{3} \end{pmatrix} = \begin{pmatrix} -213 & -313 \\ -13 & 213 \end{pmatrix} \) #### Intermediate Matrices \[ \begin{pmatrix} -219 & 219 & 219 \\ 113 & 113 & 113 \end{pmatrix} \xrightarrow{} \text{Final Answer!} \] #### Final Calculation: \[ \begin{pmatrix} -219 & 219 & 219 \\ 113 & 113 & 113 \end{pmatrix} \] **Note:** The final matrix encapsulated in a box is the result of the transformations applied during the Gaussian reduction. --- The exercise demonstrates problem-solving steps utilizing matrix operations, specifically geared for linear algebra methodology in solving systems of equations.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,