3. Given an integer a, then a³ + a² + a is even if and only if a is even. 4. Given an integer a, then a² + 4a +5 is odd if and only if a is even. 5. An integer a is odd if and only if a³ is odd. 6. Suppose x,y e R. Then x³ + x²y = y2 + xy if and only if y=x² or y=-x. Then (x + y)2 = x² + y² if and only if x = 0 or y = 0. 7. Suppose x,y e R. 8. Suppose a,b € Z. Prove that a = b (mod 10) if and only if a = b (mod 2) and a = b (mod 5). 9. Suppose a € Z. Prove that 14 | a if and only if 7|a and 2 a.
3. Given an integer a, then a³ + a² + a is even if and only if a is even. 4. Given an integer a, then a² + 4a +5 is odd if and only if a is even. 5. An integer a is odd if and only if a³ is odd. 6. Suppose x,y e R. Then x³ + x²y = y2 + xy if and only if y=x² or y=-x. Then (x + y)2 = x² + y² if and only if x = 0 or y = 0. 7. Suppose x,y e R. 8. Suppose a,b € Z. Prove that a = b (mod 10) if and only if a = b (mod 2) and a = b (mod 5). 9. Suppose a € Z. Prove that 14 | a if and only if 7|a and 2 a.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Please detailed prove on 3,5,9
![**Exercises for Chapter 7**
Prove the following statements. These exercises are cumulative, covering all techniques addressed in Chapters 4–7.
1. Suppose \(x \in \mathbb{Z}\). Then \(x\) is even if and only if \(3x + 5\) is odd.
2. Suppose \(x \in \mathbb{Z}\). Then \(x\) is odd if and only if \(3x + 6\) is odd.
3. Given an integer \(a\), then \(a^3 + a^2 + a\) is even if and only if \(a\) is even.
4. Given an integer \(a\), then \(a^2 + 4a + 5\) is odd if and only if \(a\) is even.
5. An integer \(a\) is odd if and only if \(a^3\) is odd.
6. Suppose \(x, y \in \mathbb{R}\). Then \(x^3 + x^2 y - y^2 + x y\) if and only if \(y = x^2\) or \(y = -x\).
7. Suppose \(x, y \in \mathbb{R}\). Then \((x+y)^2 = x^2 + y^2\) if and only if \(x = 0\) or \(y = 0\).
8. Suppose \(a, b \in \mathbb{Z}\). Prove that \(a \equiv b \pmod{10}\) if and only if \(a \equiv b \pmod{2}\) and \(a \equiv b \pmod{5}\).
9. Suppose \(a \equiv \mathbb{Z}\). Prove that \(14 \mid a\) if and only if \(7 \mid a\) and \(2 \mid a\).
10. If \(a \equiv \mathbb{Z}\), then \(a^3 \equiv a \pmod{3}\).
11. Suppose \(a, b \equiv \mathbb{Z}\). Prove that \((a - 3)b^2\) is even if and only if \(a\) is odd or \(b\) is even.
12. There exist a positive real number \(](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F3cd21fb3-e059-4805-be9c-60b9d1b235c0%2F0b2efdf5-96ec-454f-837f-c49cf6f27639%2Fowozq69_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Exercises for Chapter 7**
Prove the following statements. These exercises are cumulative, covering all techniques addressed in Chapters 4–7.
1. Suppose \(x \in \mathbb{Z}\). Then \(x\) is even if and only if \(3x + 5\) is odd.
2. Suppose \(x \in \mathbb{Z}\). Then \(x\) is odd if and only if \(3x + 6\) is odd.
3. Given an integer \(a\), then \(a^3 + a^2 + a\) is even if and only if \(a\) is even.
4. Given an integer \(a\), then \(a^2 + 4a + 5\) is odd if and only if \(a\) is even.
5. An integer \(a\) is odd if and only if \(a^3\) is odd.
6. Suppose \(x, y \in \mathbb{R}\). Then \(x^3 + x^2 y - y^2 + x y\) if and only if \(y = x^2\) or \(y = -x\).
7. Suppose \(x, y \in \mathbb{R}\). Then \((x+y)^2 = x^2 + y^2\) if and only if \(x = 0\) or \(y = 0\).
8. Suppose \(a, b \in \mathbb{Z}\). Prove that \(a \equiv b \pmod{10}\) if and only if \(a \equiv b \pmod{2}\) and \(a \equiv b \pmod{5}\).
9. Suppose \(a \equiv \mathbb{Z}\). Prove that \(14 \mid a\) if and only if \(7 \mid a\) and \(2 \mid a\).
10. If \(a \equiv \mathbb{Z}\), then \(a^3 \equiv a \pmod{3}\).
11. Suppose \(a, b \equiv \mathbb{Z}\). Prove that \((a - 3)b^2\) is even if and only if \(a\) is odd or \(b\) is even.
12. There exist a positive real number \(
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)