3. Find all solutions to the trigonometric equation: 3csc² x -4 = 0

Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE: 1. Give the measures of the complement and the supplement of an angle measuring 35°.
icon
Related questions
Question
### Problem Statement

**Find all solutions to the trigonometric equation:**

\[ 3 \csc^2 x - 4 = 0 \]

### Explanation

To solve this trigonometric equation, follow these steps:

1. **Rewrite the Equation:** Bring the equation into a simpler form. 
   
   \[ 3 \csc^2 x - 4 = 0 \]
   
   Add 4 to both sides:
   
   \[ 3 \csc^2 x = 4 \]
   
2. **Isolate \(\csc^2 x\):** Divide both sides by 3:
   
   \[ \csc^2 x = \frac{4}{3} \]
   
3. **Find \(\csc x\):** Take the square root of both sides:
   
   \[ \csc x = \pm \sqrt{\frac{4}{3}} \]
   \[ \csc x = \pm \frac{2}{\sqrt{3}} \]
   
   Rationalize the denominator:
   
   \[ \csc x = \pm \frac{2\sqrt{3}}{3} \]
   
4. **Convert to \(\sin x\):** Recall that \( \csc x = \frac{1}{\sin x} \). So,
  
   \[ \sin x = \pm \frac{\sqrt{3}}{2} \]

5. **Solve for \(x\):** Find \(x\) such that \( \sin x = \frac{\sqrt{3}}{2} \) and \( \sin x = -\frac{\sqrt{3}}{2} \).

   The general solutions for \( x \) where \( \sin x = \frac{\sqrt{3}}{2} \) are:
   \[ x = \frac{\pi}{3} + 2k\pi \text{ or } x = \frac{2\pi}{3} + 2k\pi \]
   
   The general solutions for \( x \) where \( \sin x = -\frac{\sqrt{3}}{2} \) are:
   \[ x = \frac{4\pi}{3} + 2k\pi \text{ or } x = \frac{5\pi}{3} + 2
Transcribed Image Text:### Problem Statement **Find all solutions to the trigonometric equation:** \[ 3 \csc^2 x - 4 = 0 \] ### Explanation To solve this trigonometric equation, follow these steps: 1. **Rewrite the Equation:** Bring the equation into a simpler form. \[ 3 \csc^2 x - 4 = 0 \] Add 4 to both sides: \[ 3 \csc^2 x = 4 \] 2. **Isolate \(\csc^2 x\):** Divide both sides by 3: \[ \csc^2 x = \frac{4}{3} \] 3. **Find \(\csc x\):** Take the square root of both sides: \[ \csc x = \pm \sqrt{\frac{4}{3}} \] \[ \csc x = \pm \frac{2}{\sqrt{3}} \] Rationalize the denominator: \[ \csc x = \pm \frac{2\sqrt{3}}{3} \] 4. **Convert to \(\sin x\):** Recall that \( \csc x = \frac{1}{\sin x} \). So, \[ \sin x = \pm \frac{\sqrt{3}}{2} \] 5. **Solve for \(x\):** Find \(x\) such that \( \sin x = \frac{\sqrt{3}}{2} \) and \( \sin x = -\frac{\sqrt{3}}{2} \). The general solutions for \( x \) where \( \sin x = \frac{\sqrt{3}}{2} \) are: \[ x = \frac{\pi}{3} + 2k\pi \text{ or } x = \frac{2\pi}{3} + 2k\pi \] The general solutions for \( x \) where \( \sin x = -\frac{\sqrt{3}}{2} \) are: \[ x = \frac{4\pi}{3} + 2k\pi \text{ or } x = \frac{5\pi}{3} + 2
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Trigonometry (11th Edition)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Algebra and Trigonometry
Algebra and Trigonometry
Trigonometry
ISBN:
9781938168376
Author:
Jay Abramson
Publisher:
OpenStax
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning