3. Explain why 3 1 dx 3-x V3 - is an improper Riemann integral. Determine whether this improper integral is conver- gent or divergent, and if it is convergent, calculate the value.
3. Explain why 3 1 dx 3-x V3 - is an improper Riemann integral. Determine whether this improper integral is conver- gent or divergent, and if it is convergent, calculate the value.
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Topic Video
Question
number 3
thank you
![**Question 3: Improper Riemann Integral Analysis**
Consider the integral:
\[
\int_{2}^{3} \frac{1}{\sqrt{3-x}} \, dx
\]
**Task:**
- **Explain why** this is an improper Riemann integral.
- **Determine** whether this improper integral is convergent or divergent, and if it is convergent, **calculate** the value.
---
**Explanation:**
An integral is considered improper if it involves infinities in the limits of integration or if the integrand approaches infinity within the interval of integration. The function \(\frac{1}{\sqrt{3-x}}\) becomes problematic at \(x = 3\) because the denominator \(\sqrt{3-x}\) approaches zero, causing the integrand to approach infinity. Thus, the integral is improper at the upper limit of integration.
**Convergence Analysis:**
To determine convergence, analyze the behavior of the integral as it approaches the problematic point (i.e., as \(x\) approaches 3 from the left). Evaluate the limit of the integral from 2 to a value approaching 3.
**Calculation:**
1. Find \(\lim_{{b \to 3^-}} \int_{2}^{b} \frac{1}{\sqrt{3-x}} \, dx\).
2. If the limit exists and is finite, the integral is convergent; otherwise, it is divergent.
3. If convergent, calculate the finite value of the limit.
This approach will aid in determining whether the integral is finite (convergent) or infinite (divergent).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fcc438c34-6e26-4f6a-9067-f367a43a4982%2Ffb05fe80-72c6-4450-bcc5-18c9c67bbc9d%2F1wea7mm_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Question 3: Improper Riemann Integral Analysis**
Consider the integral:
\[
\int_{2}^{3} \frac{1}{\sqrt{3-x}} \, dx
\]
**Task:**
- **Explain why** this is an improper Riemann integral.
- **Determine** whether this improper integral is convergent or divergent, and if it is convergent, **calculate** the value.
---
**Explanation:**
An integral is considered improper if it involves infinities in the limits of integration or if the integrand approaches infinity within the interval of integration. The function \(\frac{1}{\sqrt{3-x}}\) becomes problematic at \(x = 3\) because the denominator \(\sqrt{3-x}\) approaches zero, causing the integrand to approach infinity. Thus, the integral is improper at the upper limit of integration.
**Convergence Analysis:**
To determine convergence, analyze the behavior of the integral as it approaches the problematic point (i.e., as \(x\) approaches 3 from the left). Evaluate the limit of the integral from 2 to a value approaching 3.
**Calculation:**
1. Find \(\lim_{{b \to 3^-}} \int_{2}^{b} \frac{1}{\sqrt{3-x}} \, dx\).
2. If the limit exists and is finite, the integral is convergent; otherwise, it is divergent.
3. If convergent, calculate the finite value of the limit.
This approach will aid in determining whether the integral is finite (convergent) or infinite (divergent).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning