3. Consider a pendulum of length L, released from rest at an angle a. It can be shown that such a pendulum has period T given by T = 4, *xp: 1 – sin? (4) sin? x (a) Notice that the integrand has the form For simplicity, write A = sin? (9). Show that +Σ 1.3-5... (2n – 1) 2nn! 2n %3D V1- A sin? x n=1 (b) Calculate T/2 */2 */2 sin?: x dr, s sin“ r dr and sin® r x dr. (c) We can now determine the period T as a power series in A (which encodes the initial angle a) by integrating the power series from (a). Show that 1 1+-A+ 25 x² + 256 T = 27 64 (d) This is a great result, but the initial angle a is hidden from view. Let's turn this into a power series in a: i. We have the identity sin? t = (1 – cos(2t)). Use this to show that the Maclaurin series for sin? t is given for any t by (-1)n+12n-1 sin?t: (2n)! n=1 Write out the terms of this series up to degree 6. ii. Show that to degree 6, A is given in terms of a by 2 )"- 45 iii. Now show that to degree 6, the period T, in terms of a, is given by 11 173 T = 2n 1+ 16a +... 3072 737280 (e) You will often find the following statement: For small a, the period of a pendulum is given by T = 27/. Explain this based on your calculation.
3. Consider a pendulum of length L, released from rest at an angle a. It can be shown that such a pendulum has period T given by T = 4, *xp: 1 – sin? (4) sin? x (a) Notice that the integrand has the form For simplicity, write A = sin? (9). Show that +Σ 1.3-5... (2n – 1) 2nn! 2n %3D V1- A sin? x n=1 (b) Calculate T/2 */2 */2 sin?: x dr, s sin“ r dr and sin® r x dr. (c) We can now determine the period T as a power series in A (which encodes the initial angle a) by integrating the power series from (a). Show that 1 1+-A+ 25 x² + 256 T = 27 64 (d) This is a great result, but the initial angle a is hidden from view. Let's turn this into a power series in a: i. We have the identity sin? t = (1 – cos(2t)). Use this to show that the Maclaurin series for sin? t is given for any t by (-1)n+12n-1 sin?t: (2n)! n=1 Write out the terms of this series up to degree 6. ii. Show that to degree 6, A is given in terms of a by 2 )"- 45 iii. Now show that to degree 6, the period T, in terms of a, is given by 11 173 T = 2n 1+ 16a +... 3072 737280 (e) You will often find the following statement: For small a, the period of a pendulum is given by T = 27/. Explain this based on your calculation.
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
I need a b and c answered

Transcribed Image Text:3. Consider a pendulum of length L, released from rest at an angle a. It can be shown that such a
pendulum has period T given by
T = 4,
*xp:
1 – sin? (4) sin? x
(a) Notice that the integrand has the form
For simplicity, write A = sin? (9). Show that
+Σ
1.3-5... (2n – 1)
2nn!
2n
%3D
V1- A sin? x
n=1
(b) Calculate
T/2
*/2
*/2
sin?:
x dr, s
sin“ r dr and
sin® r
x dr.
(c) We can now determine the period T as a power series in A (which encodes the initial angle a) by
integrating the power series from (a). Show that
1
1+-A+
25
x² +
256
T = 27
64
(d) This is a great result, but the initial angle a is hidden from view. Let's turn this into a power
series in a:
i. We have the identity sin? t = (1 – cos(2t)). Use this to show that the Maclaurin series for
sin? t is given for any t by
(-1)n+12n-1
sin?t:
(2n)!
n=1
Write out the terms of this series up to degree 6.
ii. Show that to degree 6, A is given in terms of a by
2
)"-
45
iii. Now show that to degree 6, the period T, in terms of a, is given by
11
173
T = 2n
1+ 16a
+...
3072
737280
(e) You will often find the following statement: For small a, the period of a pendulum is given by
T = 27/. Explain this based on your calculation.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 6 steps with 6 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you

College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning

University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press

College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning

University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley

College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON