3. A uniform cylinder has mass M and radius R. A. Find the "area density" of the cylinder. 3. Find the moment of inertia. Hint: If you slice the cylinder into many skinny concentric disks with thickness dr, each disk could be uncoiled o make a rectangle with length 2*pi*r. You can use the length and thickness to get the area and then multiply y the density to get the mass of each disk. And each disk is r units from the center... ва 2 по
3. A uniform cylinder has mass M and radius R. A. Find the "area density" of the cylinder. 3. Find the moment of inertia. Hint: If you slice the cylinder into many skinny concentric disks with thickness dr, each disk could be uncoiled o make a rectangle with length 2*pi*r. You can use the length and thickness to get the area and then multiply y the density to get the mass of each disk. And each disk is r units from the center... ва 2 по
Related questions
Question
Please integrate to solve, label any formulas used, and draw free body diagrams, thanks!
![Zmixu
2
Units of inertia m
2= full length
x = 1p₁^
2
3. A uniform cylinder has mass M and radius R.
A. Find the "area density" of the cylinder.
B. Find the moment of inertia.
Hint: If you slice the cylinder into many skinny concentric disks with thickness dr, each disk could be uncoiled
o make a rectangle with length 2*pi*r. You can use the length and thickness to get the area and then multiply
y the density to get the mass of each disk. And each disk is r units from the center...
In Zür](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F29d9ecf2-8ea2-4c7b-b874-691941710284%2F567eb40b-9d69-4ae7-a588-7cd2557ce82c%2Fdyjm26_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Zmixu
2
Units of inertia m
2= full length
x = 1p₁^
2
3. A uniform cylinder has mass M and radius R.
A. Find the "area density" of the cylinder.
B. Find the moment of inertia.
Hint: If you slice the cylinder into many skinny concentric disks with thickness dr, each disk could be uncoiled
o make a rectangle with length 2*pi*r. You can use the length and thickness to get the area and then multiply
y the density to get the mass of each disk. And each disk is r units from the center...
In Zür
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)