3. A gas occupies a volume of 14.0 L at 455 mm Hg pressure 25 °C. What will be its new volume if the pressure is increased by 50% and the temperature remains constant? P2 Answer
Ideal and Real Gases
Ideal gases obey conditions of the general gas laws under all states of pressure and temperature. Ideal gases are also named perfect gases. The attributes of ideal gases are as follows,
Gas Laws
Gas laws describe the ways in which volume, temperature, pressure, and other conditions correlate when matter is in a gaseous state. The very first observations about the physical properties of gases was made by Robert Boyle in 1662. Later discoveries were made by Charles, Gay-Lussac, Avogadro, and others. Eventually, these observations were combined to produce the ideal gas law.
Gaseous State
It is well known that matter exists in different forms in our surroundings. There are five known states of matter, such as solids, gases, liquids, plasma and Bose-Einstein condensate. The last two are known newly in the recent days. Thus, the detailed forms of matter studied are solids, gases and liquids. The best example of a substance that is present in different states is water. It is solid ice, gaseous vapor or steam and liquid water depending on the temperature and pressure conditions. This is due to the difference in the intermolecular forces and distances. The occurrence of three different phases is due to the difference in the two major forces, the force which tends to tightly hold molecules i.e., forces of attraction and the disruptive forces obtained from the thermal energy of molecules.
![**Question 3: Volume of a Gas Under Changing Pressure**
A gas occupies a volume of 14.0 L at 455 mm Hg pressure and 25°C. What will be its new volume if the pressure is increased by 50% and the temperature remains constant?
**Solution Approach:**
To solve this problem, we will use Boyle's Law, which states that for a given mass of gas at constant temperature, the pressure of the gas is inversely proportional to its volume (P1V1 = P2V2).
1. **Initial Conditions:**
- Initial Volume (V1) = 14.0 L
- Initial Pressure (P1) = 455 mm Hg
2. **Final Conditions:**
- The pressure is increased by 50%, so:
- Final Pressure (P2) = P1 + 0.5 × P1 = 1.5 × 455 mm Hg = 682.5 mm Hg
3. **Boyle’s Law Equation:**
- P1V1 = P2V2
- (455 mm Hg)(14.0 L) = (682.5 mm Hg)V2
4. **Solving for V2:**
- V2 = (455 mm Hg × 14.0 L) / 682.5 mm Hg
5. **Final Answer:**
- V2 = (calculate the result and fill in the blank)
Answer: __________](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F042a8735-5c88-4898-a930-fc7b8d4f9458%2Fb66dac62-ad76-4632-a5ea-3bd79baf4363%2Fdvfxjeh_processed.jpeg&w=3840&q=75)
![](/static/compass_v2/shared-icons/check-mark.png)
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Organic Chemistry](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Chemistry: Principles and Reactions](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Elementary Principles of Chemical Processes, Bind…](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)