3 Leaky Capacitor The membrane of a living cell is an insulator that separates two conducting fluids. Thus, it functions as a capacitor. The membrane is not a perfect insulator, however. It has a small conductance, making it a leaky capacitor. In this problem, you will estimate the RC time constant of the cell membrane. (a) A cell membrane typically has a capacitance per unit area on the order of 1 μF/cm²- i.e., 1 cm² of the membrane material would have a capacitance of 1 µF. It is believed that the membrane material is a dielectric with x ≈ 3. What thickness does this imply for the cell membrane? (b) Electric measurements indicate that the resistance of 1 cm² of cell membrane is R 1000. What is the resistivity p of the membrane material? (c) Find an expression for the time constant 7 = RC of the membrane in terms of p, x, and €0. Show that it is inde- pendent of the area of the membrane. This should be a symbolic result, not a numerical value.
3 Leaky Capacitor The membrane of a living cell is an insulator that separates two conducting fluids. Thus, it functions as a capacitor. The membrane is not a perfect insulator, however. It has a small conductance, making it a leaky capacitor. In this problem, you will estimate the RC time constant of the cell membrane. (a) A cell membrane typically has a capacitance per unit area on the order of 1 μF/cm²- i.e., 1 cm² of the membrane material would have a capacitance of 1 µF. It is believed that the membrane material is a dielectric with x ≈ 3. What thickness does this imply for the cell membrane? (b) Electric measurements indicate that the resistance of 1 cm² of cell membrane is R 1000. What is the resistivity p of the membrane material? (c) Find an expression for the time constant 7 = RC of the membrane in terms of p, x, and €0. Show that it is inde- pendent of the area of the membrane. This should be a symbolic result, not a numerical value.
Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,