3 Express each function in the form a(x + b)2 +c, where a b and c are constants and hence state the range of each function. a f(x) = x² + 4x - 1 for x = R

College Algebra
1st Edition
ISBN:9781938168383
Author:Jay Abramson
Publisher:Jay Abramson
Chapter3: Functions
Section3.2: Domain And Range
Problem 59SE: Create a function in which the domain is x2 .
icon
Related questions
Question
100%

Please help me answer questions 3.A, 4.A, 5, 6, and 7

**Mathematical Functions and Range Exercises**

1. **Express Each Function and Determine the Range**  
   Consider each function in the form \( a(x + b)^2 + c \), where \( a, b, \) and \( c \) are constants. Determine the range of each function.

   a. \( f(x) = x^2 + 4x - 1 \) for \( x \in \mathbb{R} \)

   b. \( f(x) = 2x^2 - 4x + 3 \) for \( x \in \mathbb{R} \)

2. **Alternate Expression and Range Determination**  
   Express each function in the form \( a - b(x + c)^2 \), where \( a, b, \) and \( c \) are constants. Determine the range of each.

   a. \( f(x) = 3 - 2x - x^2 \) for \( x \in \mathbb{R} \)

   b. \( f(x) = 1 - 6x - x^2 \) for \( x \in \mathbb{R} \)

3. **Function and Range Calculation**  
   The function \( g: x \mapsto 6 + 3ax - 3x^2 \), where \( a \) is a constant, is defined for \( x \in \mathbb{R} \). Find the range of \( g \) in terms of \( a \).

4. **Select Range for \( f(x) = x^2 - 4 \)**  
   For \( x \in \mathbb{R} \), \(-a \leq x \leq a\). If the range of \( f \) is \(-4 \leq f(x) \leq 5\), find the value of \( a \).

5. **Specific Function Transformations**  
   Consider \( f(x) = 4x^2 - 8x + 2 \) for \( x \in \mathbb{R} \), \( 0 \leq x \leq k \).

   a. Express \( f(x) \) in the form \( a(x + b)^2 + c \).

   b. Determine the value of \( k \) for which the graph of \( y = f(x
Transcribed Image Text:**Mathematical Functions and Range Exercises** 1. **Express Each Function and Determine the Range** Consider each function in the form \( a(x + b)^2 + c \), where \( a, b, \) and \( c \) are constants. Determine the range of each function. a. \( f(x) = x^2 + 4x - 1 \) for \( x \in \mathbb{R} \) b. \( f(x) = 2x^2 - 4x + 3 \) for \( x \in \mathbb{R} \) 2. **Alternate Expression and Range Determination** Express each function in the form \( a - b(x + c)^2 \), where \( a, b, \) and \( c \) are constants. Determine the range of each. a. \( f(x) = 3 - 2x - x^2 \) for \( x \in \mathbb{R} \) b. \( f(x) = 1 - 6x - x^2 \) for \( x \in \mathbb{R} \) 3. **Function and Range Calculation** The function \( g: x \mapsto 6 + 3ax - 3x^2 \), where \( a \) is a constant, is defined for \( x \in \mathbb{R} \). Find the range of \( g \) in terms of \( a \). 4. **Select Range for \( f(x) = x^2 - 4 \)** For \( x \in \mathbb{R} \), \(-a \leq x \leq a\). If the range of \( f \) is \(-4 \leq f(x) \leq 5\), find the value of \( a \). 5. **Specific Function Transformations** Consider \( f(x) = 4x^2 - 8x + 2 \) for \( x \in \mathbb{R} \), \( 0 \leq x \leq k \). a. Express \( f(x) \) in the form \( a(x + b)^2 + c \). b. Determine the value of \( k \) for which the graph of \( y = f(x
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Algebra
College Algebra
Algebra
ISBN:
9781938168383
Author:
Jay Abramson
Publisher:
OpenStax
College Algebra
College Algebra
Algebra
ISBN:
9781305115545
Author:
James Stewart, Lothar Redlin, Saleem Watson
Publisher:
Cengage Learning
College Algebra (MindTap Course List)
College Algebra (MindTap Course List)
Algebra
ISBN:
9781305652231
Author:
R. David Gustafson, Jeff Hughes
Publisher:
Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
Glencoe Algebra 1, Student Edition, 9780079039897…
Glencoe Algebra 1, Student Edition, 9780079039897…
Algebra
ISBN:
9780079039897
Author:
Carter
Publisher:
McGraw Hill
Algebra: Structure And Method, Book 1
Algebra: Structure And Method, Book 1
Algebra
ISBN:
9780395977224
Author:
Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:
McDougal Littell