3 Express each function in the form a(x + b)2 +c, where a b and c are constants and hence state the range of each function. a f(x) = x² + 4x - 1 for x = R

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question
100%

Please help me answer questions 3.A, 4.A, 5, 6, and 7

**Mathematical Functions and Range Exercises**

1. **Express Each Function and Determine the Range**  
   Consider each function in the form \( a(x + b)^2 + c \), where \( a, b, \) and \( c \) are constants. Determine the range of each function.

   a. \( f(x) = x^2 + 4x - 1 \) for \( x \in \mathbb{R} \)

   b. \( f(x) = 2x^2 - 4x + 3 \) for \( x \in \mathbb{R} \)

2. **Alternate Expression and Range Determination**  
   Express each function in the form \( a - b(x + c)^2 \), where \( a, b, \) and \( c \) are constants. Determine the range of each.

   a. \( f(x) = 3 - 2x - x^2 \) for \( x \in \mathbb{R} \)

   b. \( f(x) = 1 - 6x - x^2 \) for \( x \in \mathbb{R} \)

3. **Function and Range Calculation**  
   The function \( g: x \mapsto 6 + 3ax - 3x^2 \), where \( a \) is a constant, is defined for \( x \in \mathbb{R} \). Find the range of \( g \) in terms of \( a \).

4. **Select Range for \( f(x) = x^2 - 4 \)**  
   For \( x \in \mathbb{R} \), \(-a \leq x \leq a\). If the range of \( f \) is \(-4 \leq f(x) \leq 5\), find the value of \( a \).

5. **Specific Function Transformations**  
   Consider \( f(x) = 4x^2 - 8x + 2 \) for \( x \in \mathbb{R} \), \( 0 \leq x \leq k \).

   a. Express \( f(x) \) in the form \( a(x + b)^2 + c \).

   b. Determine the value of \( k \) for which the graph of \( y = f(x
Transcribed Image Text:**Mathematical Functions and Range Exercises** 1. **Express Each Function and Determine the Range** Consider each function in the form \( a(x + b)^2 + c \), where \( a, b, \) and \( c \) are constants. Determine the range of each function. a. \( f(x) = x^2 + 4x - 1 \) for \( x \in \mathbb{R} \) b. \( f(x) = 2x^2 - 4x + 3 \) for \( x \in \mathbb{R} \) 2. **Alternate Expression and Range Determination** Express each function in the form \( a - b(x + c)^2 \), where \( a, b, \) and \( c \) are constants. Determine the range of each. a. \( f(x) = 3 - 2x - x^2 \) for \( x \in \mathbb{R} \) b. \( f(x) = 1 - 6x - x^2 \) for \( x \in \mathbb{R} \) 3. **Function and Range Calculation** The function \( g: x \mapsto 6 + 3ax - 3x^2 \), where \( a \) is a constant, is defined for \( x \in \mathbb{R} \). Find the range of \( g \) in terms of \( a \). 4. **Select Range for \( f(x) = x^2 - 4 \)** For \( x \in \mathbb{R} \), \(-a \leq x \leq a\). If the range of \( f \) is \(-4 \leq f(x) \leq 5\), find the value of \( a \). 5. **Specific Function Transformations** Consider \( f(x) = 4x^2 - 8x + 2 \) for \( x \in \mathbb{R} \), \( 0 \leq x \leq k \). a. Express \( f(x) \) in the form \( a(x + b)^2 + c \). b. Determine the value of \( k \) for which the graph of \( y = f(x
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education