3 b) A mass weighing 4 pounds is attached to a spring whose constant is 2 Ib/ft. The medium offers a damping force that is numerically equal to the instantaneous velocity. The mass is initially released from a point 1 foot above the equilibrium position with a downward velocity of 14 ft/s. Find the time (in s) at which the mass attains its extreme displacement from the equilibrium position (the extreme distance after passing the equilibrium position.) Round your answer to two digits after the decimal sign.

icon
Related questions
Question
3 b) A mass weighing 4 pounds is attached to a spring whose constant is 2 Ib/ft. The medium offers a damping force that is numerically equal to the instantaneous velocity. The mass is initially released from a point 1 foot
above the equilibrium position with a downward velocity of 14 ft/s. Find the time (in s) at which the mass attains its extreme displacement from the equilibrium position (the extreme distance after passing the equilibrium
position.) Round your answer to two digits after the decimal sign.
Transcribed Image Text:3 b) A mass weighing 4 pounds is attached to a spring whose constant is 2 Ib/ft. The medium offers a damping force that is numerically equal to the instantaneous velocity. The mass is initially released from a point 1 foot above the equilibrium position with a downward velocity of 14 ft/s. Find the time (in s) at which the mass attains its extreme displacement from the equilibrium position (the extreme distance after passing the equilibrium position.) Round your answer to two digits after the decimal sign.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer