(3,-4,-2) Show that 323 f dx + gdy + hdz = f(-3) 12x²y^z²dx + 16y³x³z²dy + 8zy r³dz is independent of path: (-4,2,-3) (-4,2,-3) || || || || || || Therefore curl F = (2-3) 12x²y²z²dx + 16y³x³z²dy + 8zy^¹r³dz = (
(3,-4,-2) Show that 323 f dx + gdy + hdz = f(-3) 12x²y^z²dx + 16y³x³z²dy + 8zy r³dz is independent of path: (-4,2,-3) (-4,2,-3) || || || || || || Therefore curl F = (2-3) 12x²y²z²dx + 16y³x³z²dy + 8zy^¹r³dz = (
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![The image contains a mathematical exercise focusing on vector calculus and integration. Below is the transcription of the content in the image:
---
**Show that:**
\[
\int_{(-4, 2, -3)}^{(3, -4, -2)} f \, dx + g \, dy + h \, dz = \int_{(-4, 2, -3)}^{(3, -4, -2)} 12x^2y^4z^2 \, dx + 16y^3x^3z^2 \, dy + 8zy^4x^3 \, dz
\]
**is independent of path:**
\[
\frac{\partial h}{\partial y} = \boxed{\phantom{aaa}}
\]
\[
\frac{\partial g}{\partial z} = \boxed{\phantom{aaa}}
\]
\[
\frac{\partial f}{\partial z} = \boxed{\phantom{aaa}}
\]
\[
\frac{\partial h}{\partial z} = \boxed{\phantom{aaa}}
\]
\[
\frac{\partial g}{\partial x} = \boxed{\phantom{aaa}}
\]
\[
\frac{\partial f}{\partial y} = \boxed{\phantom{aaa}}
\]
**Therefore curl F =**
\[
\boxed{\phantom{aaaaaaaa}}
\]
\[
\int_{(-4, 2, -3)}^{(3, -4, -2)} 12x^2y^4z^2 \, dx + 16y^3x^3z^2 \, dy + 8zy^4x^3 \, dz = \boxed{\phantom{aaaaaaaa}}
\]
---
The task involves determining whether a given line integral is path-independent by checking the conditions for the curl of the vector field. The exercise aims to demonstrate this concept using partial derivatives and integration.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F7e0c8037-834b-4d36-b3c4-eda43340784b%2F68ac6849-e0ee-46a0-b8d5-23f2d413abc7%2Fmzwomcl_processed.jpeg&w=3840&q=75)
Transcribed Image Text:The image contains a mathematical exercise focusing on vector calculus and integration. Below is the transcription of the content in the image:
---
**Show that:**
\[
\int_{(-4, 2, -3)}^{(3, -4, -2)} f \, dx + g \, dy + h \, dz = \int_{(-4, 2, -3)}^{(3, -4, -2)} 12x^2y^4z^2 \, dx + 16y^3x^3z^2 \, dy + 8zy^4x^3 \, dz
\]
**is independent of path:**
\[
\frac{\partial h}{\partial y} = \boxed{\phantom{aaa}}
\]
\[
\frac{\partial g}{\partial z} = \boxed{\phantom{aaa}}
\]
\[
\frac{\partial f}{\partial z} = \boxed{\phantom{aaa}}
\]
\[
\frac{\partial h}{\partial z} = \boxed{\phantom{aaa}}
\]
\[
\frac{\partial g}{\partial x} = \boxed{\phantom{aaa}}
\]
\[
\frac{\partial f}{\partial y} = \boxed{\phantom{aaa}}
\]
**Therefore curl F =**
\[
\boxed{\phantom{aaaaaaaa}}
\]
\[
\int_{(-4, 2, -3)}^{(3, -4, -2)} 12x^2y^4z^2 \, dx + 16y^3x^3z^2 \, dy + 8zy^4x^3 \, dz = \boxed{\phantom{aaaaaaaa}}
\]
---
The task involves determining whether a given line integral is path-independent by checking the conditions for the curl of the vector field. The exercise aims to demonstrate this concept using partial derivatives and integration.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)